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What you need to know about isogenies
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Some basic properties
Computing isogenies
The endomorphism ring

What you need to know about isogenies
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What you need to know about isogenies
Definition

Some basic properties
e Tt
The endomorphism ring

Isogenies between elliptic curves

Between elliptic curves, isogenies are non-zero morphisms of algebraic
groups.

E
?(P+Q)=¢(P)+¢(Q)
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What you need to know about isogenies
Definition
Some basic properties
e Tt
The endomorphism ring

Isogenies between abelian varieties

@ Abelian varieties are projective abelian group varieties, generalizing
elliptic curves.

@ Between abelian varieties, isogenies are morphisms which are
surjective and of finite kernel.

A1 Ao
Y \/
S < 0
o(P+Q)=¢(P)+¢(Q) °

An isogeny between abelian surfaces
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What you need to know about isogenies
Definition

Some basic properties
el
The endomorphism ring

The degree

@ An isogeny ¢ : E] — Ep can be described by rational fractions:

o(x,y) = (%,y%)-

Pierrick Dartois SQIsign2D-West



What you need to know about isogenies
Definition

Some basic properties
el
The endomorphism ring

The degree

@ An isogeny ¢ : E] — Ep can be described by rational fractions:

p(xy)= (% 8)

@ The degree measures the "size" of an isogeny:
deg(¢p) = max(deg(f(x)), deg(g(x))).

o If deg(¢) = n, we say that ¢ is an n-isogeny.
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What you need to know about isogenies
Definition

Some basic properties
el
The endomorphism ring

The degree

@ An isogeny ¢ : E] — Ep can be described by rational fractions:

p(xy)= (% 8)

@ The degree measures the "size" of an isogeny:
deg(¢p) = max(deg(f(x)), deg(g(x))).

o If deg(¢) = n, we say that ¢ is an n-isogeny.

@ The degree is multiplicative: deg(¢@ o) =deg(¢p)deg(y).
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What you need to know about isogenies
Definition
Some basic properties
el
The endomorphism ring

The degree

@ An isogeny ¢ : E] — Ep can be described by rational fractions:

p(xy)= (% 8)

The degree measures the "size" of an isogeny:

deg(¢) = max(deg(f(x)),deg(g(x)))-

If deg(¢) = n, we say that ¢ is an n-isogeny.

The degree is multiplicative: deg(¢ow) =deg(¢p)deg(y).

Most isogenies are separable: they satisfy deg(¢) = #ker(¢).
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What you need to know about isogenies
Definition
Some basic properties
el
The endomorphism ring

The degree

@ An isogeny ¢ : E] — Ep can be described by rational fractions:

p(xy)= (% 8)

The degree measures the "size" of an isogeny:

deg(¢) = max(deg(f(x)),deg(g(x)))-

If deg(¢) = n, we say that ¢ is an n-isogeny.

The degree is multiplicative: deg(¢ow) =deg(¢p)deg(y).

Most isogenies are separable: they satisfy deg(¢) = #ker(¢).

The dual isogeny @ : E; — Ej satisfies @ o =[deg(¢)]g, and
deg(¢) = deg(®).
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What you need to know about isogenies
Definition

Some basic properties
el
The endomorphism ring

Examples

o The scalar multiplication [n]: E — E is an isogeny of degree n.

@ The Frobenius:
mg: E E

(xy) — (x9y9)

with E/Fq is an inseparable isogeny of degree q.
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What you need to know about isogenies
Definition

Some basic properties
el
The endomorphism ring

Examples

o The scalar multiplication [n]: E — E is an isogeny of degree n.

@ The Frobenius:
ng:E — E

(xy) — (x%y9)
with E/Fq is an inseparable isogeny of degree q.
o Consider

E1:y2:x3+x+4 and E2Zy2=X3—X+4

over F7. Then
Bt — B

x2-2x-1 x%2+3x-2
(y) x—2 VT (x-2)2

is a separable 2-isogeny.
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What you need to know about isogenies
Definition

Some basic properties
Computing isogenies
The endomorphism ring

Why are isogenies interesting in cryptography?

The isogeny problem: Given two elliptic curves Eq, Ex/Fq, find an
isogeny E; — Eo.

This problem is assumed to be hard for both classical and quantum
computers.

Pierrick Dartois SQIsign2D-West



What you need to know about isogenies
Definition

Some basic properties

Computing isogenies

The endomorphism ring

What does it mean to "compute" an isogeny?

Definition (Efficient representation)

Let ¢ : E— E' be a d-isogeny over Fq. An efficient representation of ¢
with respect to an algorithm o7 is some data D, € {0,1}" of size
poly(log(d),log(q)) s.t. on input P € E(F,«) and D, </ returns ¢(P) in

time poly(log(d), klog(q)).
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What you need to know about isogenies
Definition

Some basic properties
Computing isogenies
The endomorphism ring

What does it mean to "compute" an isogeny?

Examples of efficient representations:
o If deg(¢p)=TI/_; ¢i, a chain of isogenies:

v T

$1 #n
- > E]. e En_]_ En
deg(e1) =1 deg(¢n)=¢n

o If deg(¢) is smooth, a generator P € E(Fq) s.t. ker(¢)=(P) (Vélu).

o If deg(¢) <2¢ is odd and E[2°] =(P, @), the image points
(@(P),(Q)) (higher dimensional interpolation).
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What you need to know about isogenies
Definition

Some basic properties

e Tarefo

The endomorphism ring

The Endomorphism ring

Definition (Endomorphism ring)

End(E) = {0} U {Isogenies ¢ : E — E}

Defines a ring for the addition and composition of isogenies.
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What you need to know about isogenies
Definition

Some basic properties

e Tarefo

The endomorphism ring

The Endomorphism ring

Definition (Endomorphism ring)

End(E) = {0} U {Isogenies ¢ : E — E}

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)
Let E/Fq (p=char(Fq)). Then End(E) is either isomorphic to:
@ An order in a quadratic imaginary field. We say that E is ordinary.
e A maximal order in a quaternion algebra ramifying at p and co. We
say that E is supersingular.
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What you need to know about isogenies

Definition

Some basic properties
e Tt
The endomorphism ring

The advantages of supersingular elliptic curves

@ A strong security reduction.

Theorem (Wesolowski, 2022)

The problem of computing the endomorphism ring of any supersingular
elliptic curve is equivalent to the isogeny problem between supersingular
elliptic curves.
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What you need to know about isogenies

Definition

Some basic properties
e Tt
The endomorphism ring

The advantages of supersingular elliptic curves

@ A strong security reduction.

Theorem (Wesolowski, 2022)

The problem of computing the endomorphism ring of any supersingular
elliptic curve is equivalent to the isogeny problem between supersingular
elliptic curves.

o If E is supersingular, then it can be defined over Fp2.

e For isogeny computations, we control the the accessible torsion
subgroups E[T] < E(F,2) by controlling p.
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The Deuring correspondence

Recalls on quaternions
The Deuring correspondence in one slide
correspondence in cryptography

The Deuring correspondence

ick Dartois



The Deuring correspondence Reedlb em et

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

@ Quaternion algebra ramifying at p and oco: A 4-dimensional non
commutative division algebra over Q:

Bpo=Q00QieQjeQk,
with

i2=—1(ipr3 mod 4), j2=-p and k=ij=—ji.

Pierrick Dartois SQIsign2D-West



The Deuring correspondence Reedlb em et

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

@ Quaternion algebra ramifying at p and oco: A 4-dimensional non
commutative division algebra over Q:

PBpoo=Q0Qi®Qj @ Qk,
with
i2=—1(ipr3 mod 4), j2=-p and k=ij=—ji.

@ Order: A full rank lattice 6 < %, with a ring structure.

e Maximal Order: An order @ c By, such that for any other order
0' 20, we have 6' =0.
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The Deuring correspondence Reedlb em et

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

@ Quaternion algebra ramifying at p and oco: A 4-dimensional non
commutative division algebra over Q:

Bpo=Q00QieQjeQk,
with

i2=—1(ipr3 mod 4), j2=-p and k=ij=—ji.

@ Order: A full rank lattice 6 < %, with a ring structure.

e Maximal Order: An order @ c By, such that for any other order
0' 20, we have 6' =0.

o Left Ideal: A left 0-ideal / is a full rank lattice / € 9By such that

o-1=1.
e Right Ideal: A right O-ideal [ is a full rank lattice | € 8, such
that I-0 =1.
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The Deuring correspondence Reedlb em et

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

o Conjugation:

a=x+yi+zj+thk—a=x—-yi—zj—tk
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The Deuring correspondence Reedlb em et

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

o Conjugation:
a=x+yi+zj+thk—a=x—-yi—zj—tk

o Norm: nrd(a) := aa=x?+y? + p(z% + t?).
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The Deuring correspondence recAlb e GretaTEnD

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

Conjugation:
a=x+yi+zj+thk—a=x—-yi—zj—tk

o Norm: nrd(a) := aa=x?+y? + p(z% + t?).

Ideal norm: nrd(/):=gcd{nrd(a) | a € I}.

Ideal conjugate: [:={a|ac/}.
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The Deuring correspondence recAlb e GretaTEnD

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Quaternions - Definitions

Conjugation:
a=x+yi+zj+thk—a=x—-yi—zj—tk

o Norm: nrd(a) := aa=x?+y? + p(z% + t?).

Ideal norm: nrd(/):=gcd{nrd(a) | a € I}.

Ideal conjugate: [:={a|ac/}.

J=la.

Equivalent left G-ideals: | ~ J < Ja € %,

p,00°
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
T DU e e b ) A em ey

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %,
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
T DU e e b ) A em ey

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %,

¢p:E—F' left ©-ideal and right @'-ideal I,
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
T DU e e b ) A em ey

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %,

¢p:E—F' left ©-ideal and right @'-ideal I,

oy E—F lp~ly (hy=lpa, @€ Bpo)
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
T DU e e b ) A em ey

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %,

¢p:E—F' left ©-ideal and right @'-ideal I,
oy E—F lp~ly (hy=lpa, @€ Bpo)
? ly
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
T DU e e b ) A em ey

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %,

¢p:E—F' left ©-ideal and right @'-ideal I,
oy E—F lp~ly (hy=lpa, @€ Bpo)
P Iy
poy by -1y
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
T DU e e b ) A em ey

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %,

¢p:E—F' left ©-ideal and right @'-ideal I,
oy E—F lp~ly (hy=lpa, @€ Bpo)
? ly
poy by -1y
deg(¢p) nrd(/y,)
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Pierrick Dartois SQIsign2D-West



The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

General method:
@ Let E1 and Ejp of known endomorphism rings @1 = End(E;) and
0> = End(Ep).
e Compute a connecting ideal | between 67 and @ (left ©1-ideal and
right O»-ideal).
e Translate / into an isogeny ¢, : E; — E».
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

General method:
@ Let E1 and Ejp of known endomorphism rings @1 = End(E;) and
0> = End(Ep).
e Compute a connecting ideal | between 67 and @ (left ©1-ideal and
right O»-ideal).
e Translate / into an isogeny ¢, : E; — E».

V" Takes polynomial time.
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?
General method:
@ Let E1 and Ejp of known endomorphism rings @1 = End(E;) and
O3 = End(Ep).
e Compute a connecting ideal | between 67 and @ (left ©1-ideal and
right O»-ideal).
e Translate / into an isogeny ¢, : E; — E».

V" Takes polynomial time.

v' Becomes hard when End(Ej) or End(E>) is unknown.
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The Deuring correspondence Re=llb e Grereafnn

The Deuring correspondence in one slide
The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

General method:
@ Let E1 and Ejp of known endomorphism rings @1 = End(E;) and
0> = End(Ep).
e Compute a connecting ideal | between 67 and @ (left ©1-ideal and
right O»-ideal).
e Translate / into an isogeny ¢, : E; — E».

V" Takes polynomial time.

v' Becomes hard when End(Ej) or End(E>) is unknown.

Problem: How to make the last step efficient?
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The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Overview of SQlsign

Overview of SQlsign
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The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Overview of SQlsign

The SQIsign identification scheme

Psk
EO Epk Prover Verifier
Claim : | know ¢y
public
Prover's secret

published by Verifier
published by Prover
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° i £ SQlei The protocol
verview of SQlsign The old ideal to isogeny translation method

A brief history of SQIsign

The SQIsign identification scheme

Psk
EO Epk Prover Verifier
Claim : | know ¢y
®Pcom
Commitment: Ecom
Ecom
— public
Prover's secret

——— published by Verifier
published by Prover
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° i £ SQlei The protocol
verview of SQlsign The old ideal to isogeny translation method

A brief history of SQIsign

The SQIsign identification scheme

Psk
EO Epk Prover Verifier
Claim : | know ¢y
®Pcom Pchl .
Commitment: Ecom
Challenge: ¢cp
Ecom Echl
— public
Prover's secret

——— published by Verifier
published by Prover
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° i £ SQlei The protocol
verview of SQlsign The old ideal to isogeny translation method

A brief history of SQIsign

The SQIsign identification scheme

Psk
EO Epk Prover Verifier
Claim : | know ¢y
®Pcom Pchl
Commitment: Ecom
Prsp

Challenge: ¢cp

Ecom—’EchI

Response: ¢rsp

— public

Prover's secret
——— published by Verifier
——— published by Prover
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° i £ SQlei The protocol
verview of SQlsign The old ideal to isogeny translation method

A brief history of SQIsign

The SQIsign identification scheme

Psk
EO Epk Prover Verifier
Claim : | know ¢y
®Pcom Pchl
Commitment: Ecom
Prsp

Challenge: ¢cp)

Ecom—’EchI

Response: ¢rsp

— public

Prover's secret
——— published by Verifier
——— published by Prover

Accept if @rsp
is correct*

*@rsp should not factor through ¢y
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Overview of SQlsign

The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Computing the response/signature

lcom | Pcom

Psk
Eg—m Epk
/sk
Iehl | Pchl
Prsp
------ >Echi
Irsp
public

Prover's secret
published by Verifier
published by Prover

Pierrick Dartois

@ Prsp = Pchl © Psk °Pcom would
neither be valid nor secure.

@ Instead, use the Deuring
correspondence.

SQIsign2D-West



The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Overview of SQlsign

Computing the response/signature

Psk

Eg ——————— > Epx ® Prsp = Pchl © Psk © Pcom would

Isic neither be valid nor secure.

@ Instead, use the Deuring
lcom | Pcom Icht | Pehl correspondence.

o Find /sp ~7com-lsk-/ch| random

Prsp and of smooth norm via [KLPT14].

Ecom---------- >Echi .
lsp o Translate /sp into @rsp.
public

Prover's secret
published by Verifier
published by Prover
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The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Overview of SQlsign

Computing the response/signature

Psk

Ey ———m8 Epk @ Prsp = Pchl 0 sk © Pcom would

Isic neither be valid nor secure.

@ Instead, use the Deuring
lcom | Pcom Icht | Pehl correspondence.

o Find /sp ~7com-lsk-/ch| random

Prsp and of smooth norm via

Ecom---------- >Echi .
Irsp o Irsp INto Prsp.
public

Slow in practice because of the
Prover's secret steps.

published by Verifier
published by Prover
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The direct method [GPS20]

Input: E/F > supersingular, © =End(E) and J a left 0-ideal of smooth
norm.

Output: ¢, E— E;.
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The direct method [GPS20]

Input: E/F > supersingular, © =End(E) and J a left 0-ideal of smooth
norm.

Output: ¢, E— E;.

o Compute
ker(p)):={PeE|Vae), a(P)=0}.
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The direct method [GPS20]

Input: E/F > supersingular, © =End(E) and J a left 0-ideal of smooth
norm.

Output: ¢, E— E;.

o Compute
ker(p)):={PeE|Vae), a(P)=0}.

@ Then ¢, can be computed in O(polylognrd(J)) operations over the
field of definition F « of ker(¢,).
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i £ ; The protocol
Overview of SQlsign The old ideal to isogeny translation method
A L ey ot Sl e

The direct method [GPS20]

Input: E/F > supersingular, © =End(E) and J a left 0-ideal of smooth
norm.

Output: ¢, E— E;.

o Compute
ker(p)):={PeE|Vae), a(P)=0}.

@ Then ¢, can be computed in O(polylognrd(J)) operations over the
field of definition F « of ker(¢,).

A Issue: If Jis a KLPT output, then nrd(J) = p'%/4 > p so the
extension degree k is exponentially big. Not practical for SQISign !
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The SQIsign method [FLLW23|

Main idea: Cut the computation into smaller pieces. Write

J:JO.Jl...Jn_l and QJ=@p_10--0Q10¢PQ
with nrd(Jg) = -+ = nrd(J,_1) = 2.
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The SQIsign method [FLLW23|

Main idea: Cut the computation into smaller pieces. Write

J=Jo-hr-dpm1 and @ y=¢@u_10--0@10¢g

with nrd(Jg) = -+ = nrd(J,_1) = 2.
4 A o1
E=B— 2 F By v Eni——E,=E
("] @P1 Pn-1

Pierrick Dartois SQIsign2D-West



The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The SQIsign method [FLLW23|

Main idea: Cut the computation into smaller pieces. Write

J:JO.Jl...Jn_l and QJ=@p_10--0Q10¢PQ

with nrd(Jg) = -+ = nrd(J,_1) = 2.
J J Jo.
E=B— B~ JF - B E,=Ey
("] @P1 Pn-1

X This is slow in practice!
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The SQIsign method [FLLW23|

Main idea: Cut the computation into smaller pieces. Write

J:JO.Jl...Jn_l and QJ=@p_10--0Q10¢PQ

with nrd(Jg) = -+ = nrd(J,_1) = 2.
J J Jo.
E=B— B~ JF - B E,=Ey
("] @P1 Pn-1

X This is slow in practice!

X Torsion requirements: deg(6;) = T2 coprime with 2, so we need
ERfT)c E(Fp4). This constrains the choice of p.
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The protocol
The old ideal to isogeny translation method
A L ey ot Sl e

Overview of SQlsign

The SQIsign method [FLLW23|

Main idea: Cut the computation into smaller pieces. Write

J:JO.Jl...Jn_l and QJ=@p_10--0Q10¢PQ

with nrd(Jg) = -+ = nrd(J,_1) = 2.
N/ J J,_
E=B— B JE" - B - rE,=E
("] @P1 Pn-1

X This is slow in practice!

X Torsion requirements: deg(6;) = T2 coprime with 2, so we need
ERfT)c E(Fp4). This constrains the choice of p.

v~ Torsion requirements can be relaxed with intermediate steps 0; in
dimension 2 [ON24] but this is still not efficient enough.
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The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Overview of SQlsign

A brief history of SQIsign

|
2020 ] SQlsign [DKLPW20] \ 1D Ideal to Isogeny

2021 ’ SQIsign x2 as fast [FLLW23] ‘ Enhanced 1D Ideal to Isogeny
|
|
|
|

w HD SIDH attacks Introduction of HD isogenies

2022 [CD23; MMPPW?23; Rob23] in cryptology
e e e e - = _I ,,,,,,,,,,,,
2023 ’ SQIsignHD [DLRW24] ‘ 4D Ideal to Isogeny (verif)
[
2024 SQIsign2D variants 2D Ideal to Isogeny
[NOC+25; BFD+24; DF25] (sign & verif)

!
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The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Overview of SQlsign

Response/signature in SQIlsign

Psk _ PS Id
Eg ——————— > Epx @ Prsp = Pchl ©Psk © Pcom Wou
Isic neither be valid nor secure.
@ Instead, use the Deuring
lcom | Pcom Icht | Pehl correspondence.
o Find /sp ~7com-lsk-/ch| random
Prsp and of smooth norm via
Ecom---------- >Echi .
Irsp o Irsp INto Prsp.
public

Slow in practice because of the
Prover's secret steps.

published by Verifier
published by Prover
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Overview of SQlsign

The protocol
The old ideal to isogeny translation method
A brief history of SQIsign

Response/signature in SQlsignHD /2D

Fp———

lcom | Pcom

Psk

Epk
p
/sk
Iehl | Pchl

Prsp
------ >Echi
Irsp
public

Prover's secret
published by Verifier
published by Prover

Pierrick Dartois

@ Prsp = Pchl © Psk °Pcom would
neither be valid nor secure.

@ Instead, use the Deuring
correspondence.

@ Find lsp ~ Icom * Isk * Ich) random
and of i
small norm = /p.

@ Translate /sp into @rsp.

V' Faster in practice with dimension 2
(or 4) isogenies.

SQIsign2D-West



New techniques for ideal to isogeny translations

Kani's embedding lemma

Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

Translating an ideal from another curve

New techniques for ideal to isogeny translations

Pierrick Dartois

SQIsign2D-West



Kani's embedding lemma
Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

/

E -
v O v

Ei— B

s.t. deg(p)=deg(¢’) = q and deg(w) =deg(y’) = r are coprime.
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Kani's lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

/

E4LE3
v O
E, — E

s.t. deg(¢)=deg(¢’) = q and deg(w) =deg(y’) = r are coprime. Then
the isogeny:

¢ 1?)
D= ~|:E1x E3 — E» x E,
(—1// o) E1xEs 2% Eq

is a (g+r,q+r)-isogeny, i.e. Do® =[g+7r], and its kernel is:

ker(®) = ([q]P, o (P)) | P e Exfq + .
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Kani's embedding lemma
Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

@ Let ¢: E; — Ep be an isogeny of odd degree g <2€ to be
computed.

o Let w: Ep — E3 be an auxiliary isogeny of degree r:=2¢—gq.

Pierrick Dartois



Kani's embedding lemma
Computing an isogeny of any degree from a special curve

New techniques for ideal to isogeny translations Translating any ideal from a special curve
Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

@ Let ¢: E; — Ep be an isogeny of odd degree g <2€ to be
computed.

o Let w: Ep — E3 be an auxiliary isogeny of degree r:=2¢—gq.
@ Suppose we know o @p(E1[2°]).

@ Then we can compute:

ker(®) = {([q]P,y o (P)) | P € E1[2°]}.
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Kani's embedding lemma
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Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

@ Let ¢: E; — Ep be an isogeny of odd degree g <2€ to be
computed.

o Let w: Ep — E3 be an auxiliary isogeny of degree r:=2¢—gq.
@ Suppose we know o @p(E1[2°]).

@ Then we can compute:

ker(®) = {([q]P,y o (P)) | P € E1[2°]}.

@ So we can compute

(DZZ(_(:;/, 5)2E1XE3—>E2XE4
as a chain of e (2,2)-isogenies [DMPR25]:

P2 Ay e Aeg —2 L EyxEy.

Epx B3 -2 Ay
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Kani's embedding lemma
Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
Translating an ideal from another curve

Kani's lemma [Kan97] and efficient representations

@ Knowing @, we can evaluate ¢ everywhere:
®(P,0) = (o(P),—v'(P)).

@ So (yo@(E1][2°]),q,e) is an efficient representation of ¢ (and ).
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Kani's embedding lemma
Computing an isogeny of any degree from a special curve
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New techniques for ideal to isogeny translations
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Kani's lemma [Kan97] and efficient representations

@ Knowing @, we can evaluate ¢ everywhere:
®(P,0) = (o(P),—v'(P)).

@ So (yo@(E1][2°]),q,e) is an efficient representation of ¢ (and ).

The Power of Kani’s lemma:

@ A way to interpolate isogenies given their images on torsion points
(led to SIDH attacks).

@ Provides efficient representations on non-smooth degree isogenies.
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Kani's embedding lemma
Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
Translating an ideal from another curve

Exploiting an easy instance of the endomorphism ring

problem [NO23]

Let Ep:y? =x>+x defined over F,, (with 2¢|p+1 so that E[2¢] < E(F,2)).

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

Pierrick Dartois SQIsign2D-West
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Exploiting an easy instance of the endomorphism ring

problem [NO23]

Let Ep:y? =x>+x defined over F,, (with 2¢|p+1 so that E[2¢] < E(F,2)).

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

Idea: Exploit our knowledge of End(Ep):

L+ l+iom
End(Ep)=Ze®Zi10Z— Poz 5 iy
where:
o 1:(x,y)— (=x,v/=1y) (corresponds to i € Bpco, i’ =-1);
e 7p:(x,y)— (xP,yP) is the p-th Frobenius endomorphism
(corresponds to j € Bp oo, j> = —p).
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Kani's embedding lemma
Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
Translating an ideal from another curve

Applying Kani's lemma [NO23]

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

e Compute a solution (x,y,z,t) to:

X2 +y?+p(2? + %) = u(2° - u).
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Applying Kani's lemma [NO23]

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

e Compute a solution (x,y,z,t) to:
X2 +y?+p(2? + %) = u(2° - u).
o Consider the endomorphism of degree u(2¢ - u):

0 :=x+yL+zn,+tion, € End(Ep).
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Applying Kani's lemma [NO23]

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

e Compute a solution (x,y,z,t) to:
X2 +y?+p(2? + %) = u(2° - u).
o Consider the endomorphism of degree u(2¢ - u):
0 :=x+yL+zn,+tion, € End(Ep).
o Consider the commutative diagram:
e g,
1/ ]

EO‘,’E’

with 8 =y o, deg(p) = u and deg(y) =2°—wu.
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Kani's embedding lemma
Computing an isogeny of any degree from a special curve
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
Translating an ideal from another curve

The solution [NO23]

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

e By Kani's lemma, we have a (2¢,2¢)-isogeny

¢ v
(D:(—U/, &,):EOXE()*EXE,.

with kernel
ker(®) = {([u] P,6(P)) | P € Eo[2°];.
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The solution [NO23]

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

e By Kani's lemma, we have a (2¢,2¢)-isogeny

¢ v
(D:(—U/, &,):EOXE()*EXE,.

with kernel
ker(®) = {([u] P,6(P)) | P € Eo[2°];.

o Knowing 0, we can compute ker(®) and ® [DMPR25].
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The solution [NO23]

Goal: Given u<2€ odd, compute ¢ : Eg — E of degree u.

e By Kani's lemma, we have a (2¢,2¢)-isogeny

¢ v
(D:(—U/, &,):EOXE()*EXE,.

with kernel
ker(®) = {([u] P,6(P)) | P € Eo[2°];.

o Knowing 0, we can compute ker(®) and ® [DMPR25].

o @ efficiently represents ¢ : Eg — E of degree u.
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New techniques for ideal to isogeny translations
Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal / < End(Ep) into an isogeny ¢, : Eg — Ej.

©Q Find l1,h~1 and u,v>0 s.t.
ged(unrd(/y),vnrd(l)) =1 and

T‘Pv unrd(/l1) +vnrd(h) =2°.
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Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal / < End(Ep) into an isogeny ¢, : Eg — Ej.

©Q Find l1,h~1 and u,v>0 s.t.
ged(unrd(/y),vnrd(l)) =1 and

T‘Pv unrd(/l1) +vnrd(h) =2°.
v’ O P Eo
o1 © Comput tor 0 € End(Ep) of
E, — Ey — E ompute a generator 0 € En (Eo) o
Pu—Ph h 1> =6-End(Ep).
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New techniques for ideal to isogeny translations
Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal / < End(Ep) into an isogeny ¢, : Eg — Ej.

o ©Q Find l1,h~1 and u,v>0 s.t.
El — E, ged(unrd(/y),vnrd(l)) =1 and
[or unrd(l1)+vnrd(h) =2°.
(4 O o Fo
P
E, — Eo i ; ’ © Compute a generator 6 € End(Ep) of
Pu Pn Il =6-End(Ep).

© Compute isogenies ¢, : Eg — E, and
¢, : Ep — E, of degrees u,v.
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New techniques for ideal to isogeny translations
Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal / < End(Ep) into an isogeny ¢, : Eg — Ej.

Consider the (2¢,2¢)-isogeny

EILE
v O:E,xE,—E xE'
o.
E
@0 0
S o
E, — Ey — E
Pu (pll

" embedding ¢, 0@, and @, 0@y,.
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@it o ey & cny dhmae Gem o qpesH) e
Translating any ideal from a special curve

New techniques for ideal to isogeny translations
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The Clapoti method (inspired from [PR23])

Goal: Translate any ideal / < End(Ep) into an isogeny ¢, : Eg — Ej.

Consider the (2¢,2¢)-isogeny

(p’
E » B ®:E,xE,— E xE'

Tov

embedding ¢, 0@, and @, 0@y,.

v’ Eo
7 1o
2 Q Use 0,¢,,¢, to compute ker(®) and
Ey a Eo ‘?/1 E then compute ®.
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New techniques for ideal to isogeny translations
Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal / < End(Ep) into an isogeny ¢, : Eg — Ej.

Consider the (2¢,2¢)-isogeny

(p’
E » B ®:E,xE,— E xE'

Tov

embedding ¢, 0@, and @, 0@y,.

v’ Eo
7 1o
2 Q Use 0,¢,,¢, to compute ker(®) and
Ey a Eo ‘?/1 E then compute ®.

© Evaluating @ we can evaluate ¢, then
¢ (by the equivalence I ~ ).

v @ efficiently represents ;.
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New techniques for ideal to isogeny translations
Translating an ideal from another curve

How to translate an ideal outside of End(Eg)?

Goal: Given ¢;: Eg — E; and K =[J]«/ <End(E,), compute
¢k E;j— Ek.

PNy
[

()0/ I K:[J]*/ (pK

B E
J
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How to translate an ideal outside of End(Eg)?

Goal: Given ¢;: Eg — E; and K =[J]«/ <End(E,), compute
¢k E;j— Ek.

Pl1.J
| [I[]] ; Ex e Compute L:=J-K cEnd(Ep).
o Compute @) =@pkop, : Eg— Ek.
o1l K =[J].!| ¢k o Given ¢; and ¢, we obtain @k.
B L
J
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How to translate an ideal outside of End(Eg)?

Goal: Given ¢;: Eg — E; and K =[J]«/ <End(E,), compute
¢k E;j— Ek.

Pl1.J
| [I[]] ; Ex e Compute L:=J-K < End(Ep).
o Compute @) =@pkop, : Eg— Ek.
o1l K =[J].!| ok o Given ¢; and ¢, we obtain ¢k.
v Efficient representations of ¢; and ¢
yield an efficient representation of ¢k.
Py
E————— E;
J
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SQIsign2D-West: the fast, the small and the safer

Pierrick Dartois SQIsign2D-West



Performance
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A dramatic improvement of time performance

Table: Comparison of time performance in 109 CPU cycles of SQlsign (NIST
round 1) on an Intel Xeon Gold 6338 CPU (Ice Lake) and SQIsign2D (NIST
round 2) on an Intel Core i7-13700K CPU.

NIST I NIST Il NIST V

Key Gen. 2834 21359 84944

SQlsign Signature 4781 38884 160 458
Verification 103 687 2 051
Key Gen. 71.8 188.2 325.4
SQIsign2D | Signature 163.1 427.0 751.8
Verification 11.3 30.4 61.9
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Compactness slightly improved

Table: Comparison of key and signature sizes in bytes of SQIsign (NIST
round 1) and SQIsign2D (NIST round 2).

NIST I NIST Il NIST V
Pub. key 64 96 128
SQIsign Priv. key 782 1138 1509
Signature 177 263 335
Pub. key 65 97 129
SQIsign2D | Priv. key 353 529 701
Signature 148 224 292
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Fiat-Shamir transform

Theorem (Fiat-Shamir, 1986)
Let ID be an identification protocol that is:
o Complete: a honest execution is always accepted by the verifier.

@ Sound: an attacker cannot "guess" a response.
o Zero-knowledge: the response does not leak any information on
the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable
signature under chosen message attacks in the random oracle model.
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SQIsign2D-West: the fast, the small and the safer

SQIsign security assumptions

of @rsp.

e Heuristic on
the distribution
of Ecom (uniform).

SQlsign [ SQIsignHD [ SQlsign2D

Soundness The Endomorphism Ring Problem (strong)
Zero o Heuristic on o An oracle returning | e 2 oracles returning
knowledge | the distribution | "random" isogenies. "random" isogenies.
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Conclusion
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Conclusion

A bief history of SQIsign improvements

SQIsign | SQIsignHD | SQIsign2D
Security v v
proof
Scalability v v
Signing time X &4 v
Compactness v v v
Verification v vV
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Conclusion

Thanks for listening!

You can find my paper here:

A. Basso, P. Dartois, L. De Feo, A. Leroux, L. Maino, G. Pope, D. Robert and B. Wesolowski.
SQIsign2D-West: The Fast, the Small, and the Safer. Asiacrypt 2024.
https://eprint.iacr.org/2024/760
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On the SQIsign2D protocol

A dix: detail 4 q
Ppendix: some details On the security analysis

Key Generation

Psk Public parameters: p=c-2¢-1 with ¢
small, Eg of j-invariant 1728 and
(Po, Qo) st Eo[2€] = (Po, Qo).

Key Generation:

@ Sample a left-ideal I of
0o = End(Ep) of big fixed norm N.
@ Translate I into ¢g via
AnyldealTolsogeny.
°

@ sk= (Isk)(psk(PO))(psk(QO))-
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On the SQIsign2D protocol

A dix: detail 4 q
Ppendix: some details On the security analysis

Commitment

Psk Commitment:

@ Sample a left-ideal fcom of
0o = End(Eg) of norm N.

o Translate lcom iNt0 Pcom Via

Peom Anyldeal Tolsogeny.
@ com = Ecom.
@ sCc= (/com»(Pcom(PO)»(Pcom(QO))-
Ecom
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On the SQIsign2D protocol

A dix: detail 4 q
Ppendix: some details On the security analysis

Commitment

Psk Commitment:

@ Sample a left-ideal fcom of
0o = End(Eg) of norm N.

o Translate lcom iNt0 Pcom Via

Peom Anyldeal Tolsogeny.
@ com = Ecom.
@ sCc= (/com»(Pcom(PO)»(Pcom(QO))-
Ecom

Differences with SQlsign(HD):

° deg((psk) and deg((pcom) are not
smooth.

@ The distribution of Ecom (and Epy)
is provably uniform.
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On the SQIsign2D protocol

A dix: detail 4 q
Ppendix: some details On the security analysis

Challenge

Challenge:

o Sample @cp: Egk — Ecp) of degree
2€=p.

@ In SQIsignHD, deg(@chi) = /P was

Peom Pehl sufficient for the challenge space
but we need deg(@cpi) = p here for
security reasons.

Ecom Echl
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Appendix: some details

On the SQIsign2D protocol
On the security analysis

Response

Pcom

Ecom = Eq|

Prsp

Pchl

D
Paux °

Y

El

aux

Response:

Compute Iep < End(Epk)
associated to ¢ (SQIlsignHD).

J—lcom - lsic e

Compute fsp ~ J random of norm
q<2"=,/p.

g can be even (suppose it is odd
for clarity).

Sample I\, < 0p at random of

norm 2" —gq.

Ia:ux - [Icom : Irsp]* Ie,a’ux-

Apply AnyldealTolsogeny to

leom - Irsp * Ihux to compute Eaux and
Paux © Prsp © Pcom (Po, Qo)-
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On the SQIsign2D protocol

A dix: detail 4 q
Ppendix: some details On the security analysis

Response

Psk Response:

o Compute the (27,2")-isogeny:

@: Ecom x E:-Ilux — Lchl X Eaux

Pcom Pchl
of kernel:
E" Prsp \ <([Q]'DO»(P,aux°(PrspO(Pcom(PO))y
_
com chl ([q] QO’(p’auxo(PTSP O(Pcom(QO))>-
\\\ // @ Compute a deterministic basis
Pax D Ol (Pent> Qeht) of Eci[27].
AN o Evaluate @ to obtain (Paux, Qaux) =
! ,/' . \\ Il [1/(2r—q)](PauxC’@rsp(Pchvachl)-
Evo Prsp £ @ Return (Eaux, Paux, Qaux)-
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On the SQIsign2D protocol

A dix: detail 4 q
Ppendix: some details On the security analysis

Verification

Psk Verification:

o Compute a deterministic basis
(Pehi» Qehl) of Ecni[27].
C te the (27,2")-i :
Deom Do o Compute the ( )-isogeny
D: Echi % Eaux — Ecom % Ea,\ux
Y Y
Prsp .
Eeom Ep of kernel:
\\\ /// <(Pch|r Paux)»(Qchl, Qaux)>'
Paux \‘q)’/ Ol @ Check its codomain is Ecom X _.
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On the SQIsign2D protocol
On the security analysis

Appendix: some details

Zero Knowledge Property

Definition (Uniform Target Oracle)

A uniform target oracle (UTO) is an oracle taking as input a
supersingular elliptic curve E/F 2> and an integer N =Q(,/p), and
outputs a random isogeny ¢ : E — E’ such that:

@ The distribution of E’ is uniform among all the supersingular elliptic
curves.

@ The conditional distribution of ¢ given E’ is uniform among
isogenies E — E' of degree smaller or equal to N.

Definition (Fixed Degree Isogeny Oracle)

A fixed degree isogeny oracle (FIDIO) is an oracle taking as input a
supersingular elliptic curve E/[sz and an integer N, and outputs a
uniformly random isogeny ¢ : E — E' with domain E and degree N.
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On the SQIlsign2D protocol

Appendix: some details On the security analysis

Zero Knowledge Property

The identification protocol is statistically honest-verifier zero-knowledge
in the UTO and FIDIO model. In other words, there exists a polynomial
time simulator # with access to a UTO and a FIDIO that produces
random transcripts which are statistically indistinguishable from honest
transcripts.
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On the SQIlsign2D protocol

Appendix: some details On the security analysis

Zero Knowledge Property

The identification protocol is statistically honest-verifier zero-knowledge
in the UTO and FIDIO model. In other words, there exists a polynomial
time simulator # with access to a UTO and a FIDIO that produces
random transcripts which are statistically indistinguishable from honest
transcripts.

Sketch of proof: Case when q:=deg(¢sp) is odd.
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On the SQIlsign2D protocol

A dix: detail 3 g
ppendix: some details On the security analysis

Zero Knowledge Property

The identification protocol is statistically honest-verifier zero-knowledge
in the UTO and FIDIO model. In other words, there exists a polynomial
time simulator # with access to a UTO and a FIDIO that produces
random transcripts which are statistically indistinguishable from honest
transcripts.

Sketch of proof: Case when q:=deg(¢sp) is odd.

o Generate an isogeny @cp| : Epk — Ecpy according to the honest
challenge distribution.
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On the SQIlsign2D protocol

A dix: detail 3 g
ppendix: some details On the security analysis

Zero Knowledge Property
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