Improvements of SQIsign: faster and safer isogeny signatures

Andrea Basso, <u>Pierrick Dartois</u>, Luca De Feo, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert and Benjamin Wesolowski

2025, February 13

- 1 What you need to know about isogenies
- 2 The Deuring correspondence
- Overview of SQIsign
- 4 New techniques for ideal to isogeny translations
- 5 SQIsign2D-West: the fast, the small and the safer
- 6 Conclusion

The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

What you need to know about isogenies

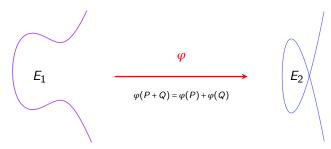
The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion

Definition

Some basic properties Computing isogenies The endomorphism ring

Isogenies between elliptic curves

Between elliptic curves, isogenies are non-zero morphisms of algebraic groups.

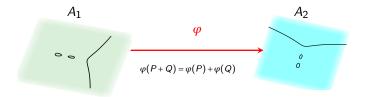


The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition

Some basic properties Computing isogenies The endomorphism ring

Isogenies between abelian varieties

- Abelian varieties are projective abelian group varieties, generalizing elliptic curves.
- Between abelian varieties, isogenies are morphisms which are surjective and of finite kernel.



An isogeny between abelian surfaces

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The degree

• An isogeny $\varphi: E_1 \longrightarrow E_2$ can be described by rational fractions:

$$\varphi(x,y) = \left(\frac{f(x)}{g(x)}, y\frac{p(x)}{q(x)}\right).$$

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The degree

• An isogeny $\varphi: E_1 \longrightarrow E_2$ can be described by rational fractions:

$$\varphi(x,y) = \left(\frac{f(x)}{g(x)}, y\frac{p(x)}{q(x)}\right).$$

• The <u>degree</u> measures the "size" of an isogeny:

$$\deg(\varphi) = \max(\deg(f(x)), \deg(g(x))).$$

• If $deg(\varphi) = n$, we say that φ is an <u>*n*-isogeny</u>.

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The degree

• An isogeny $\varphi: E_1 \longrightarrow E_2$ can be described by rational fractions:

$$\varphi(x,y) = \left(\frac{f(x)}{g(x)}, y\frac{p(x)}{q(x)}\right).$$

• The <u>degree</u> measures the "size" of an isogeny:

$$\deg(\varphi) = \max(\deg(f(x)), \deg(g(x))).$$

- If $deg(\varphi) = n$, we say that φ is an <u>*n*-isogeny</u>.
- The degree is multiplicative: $deg(\varphi \circ \psi) = deg(\varphi) deg(\psi)$.

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The degree

• An isogeny $\varphi: E_1 \longrightarrow E_2$ can be described by rational fractions:

$$\varphi(x,y) = \left(\frac{f(x)}{g(x)}, y\frac{p(x)}{q(x)}\right).$$

• The <u>degree</u> measures the "size" of an isogeny:

$$\deg(\varphi) = \max(\deg(f(x)), \deg(g(x))).$$

- If $deg(\varphi) = n$, we say that φ is an <u>*n*-isogeny</u>.
- The degree is multiplicative: $deg(\varphi \circ \psi) = deg(\varphi) deg(\psi)$.
- Most isogenies are separable: they satisfy $deg(\varphi) = \# ker(\varphi)$.

The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The degree

• An isogeny $\varphi: E_1 \longrightarrow E_2$ can be described by rational fractions:

$$\varphi(x,y) = \left(\frac{f(x)}{g(x)}, y\frac{p(x)}{q(x)}\right).$$

• The degree measures the "size" of an isogeny:

$$\deg(\varphi) = \max(\deg(f(x)), \deg(g(x))).$$

- If $deg(\varphi) = n$, we say that φ is an <u>*n*-isogeny</u>.
- The degree is multiplicative: $deg(\varphi \circ \psi) = deg(\varphi) deg(\psi)$.
- Most isogenies are separable: they satisfy deg(φ) = # ker(φ).
- The dual isogeny $\widehat{\varphi} : E_2 \longrightarrow E_1$ satisfies $\widehat{\varphi} \circ \varphi = [\deg(\varphi)]_{E_1}$ and $\deg(\varphi) = \deg(\widehat{\varphi})$.

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

Examples

- The scalar multiplication $[n]: E \longrightarrow E$ is an isogeny of **degree** n^2 .
- The Frobenius:

$$\begin{array}{rccc} \pi_q \colon E & \longrightarrow & E \\ (x,y) & \longmapsto & (x^q,y^q) \end{array}$$

with E/\mathbb{F}_q is an inseparable isogeny of degree q.

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion

Definition Some basic properties Computing isogenies The endomorphism ring

Examples

- The scalar multiplication $[n]: E \longrightarrow E$ is an isogeny of **degree** n^2 .
- The Frobenius:

$$\begin{array}{rccc} \pi_q \colon E & \longrightarrow & E \\ (x,y) & \longmapsto & (x^q,y^q) \end{array}$$

with E/\mathbb{F}_q is an inseparable isogeny of degree q.

• Consider

$$E_1: y^2 = x^3 + x + 4$$
 and $E_2: y^2 = x^3 - x + 4$

over \mathbb{F}_7 . Then

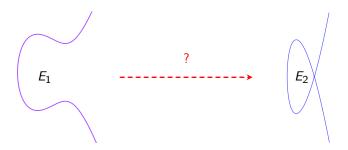
$$\varphi: E_1 \longrightarrow E_2 (x,y) \longmapsto \left(\frac{x^2 - 2x - 1}{x - 2}, y \frac{x^2 + 3x - 2}{(x - 2)^2}\right)$$

is a separable 2-isogeny.

The Deuring correspondence Overview of SQ1sign New techniques for ideal to isogeny translations SQ1sign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

Why are isogenies interesting in cryptography?

The isogeny problem: Given two elliptic curves $E_1, E_2/\mathbb{F}_q$, find an isogeny $E_1 \longrightarrow E_2$.



This problem is assumed to be hard for both classical and quantum computers.

The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safe Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

What does it mean to "compute" an isogeny?

Definition (Efficient representation)

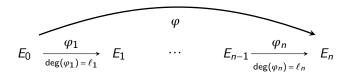
Let $\varphi: E \longrightarrow E'$ be a *d*-isogeny over \mathbb{F}_q . An <u>efficient representation</u> of φ with respect to an algorithm \mathscr{A} is some data $D_{\varphi} \in \{0,1\}^*$ of size poly $(\log(d), \log(q))$ s.t. on input $P \in E(\mathbb{F}_{q^k})$ and D_{φ} , \mathscr{A} returns $\varphi(P)$ in time poly $(\log(d), k \log(q))$.

The Deuring correspondence Overview of SQleign New techniques for ideal to isogeny translations SQlsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

What does it mean to "compute" an isogeny?

Examples of efficient representations:

• If deg $(\varphi) = \prod_{i=1}^{r} \ell_i$, a chain of isogenies:



- If deg(φ) is smooth, a generator P ∈ E(F_q) s.t. ker(φ) = ⟨P⟩ (Vélu).
- If deg(φ) < 2^e is odd and E[2^e] = (P, Q), the image points (φ(P), φ(Q)) (higher dimensional interpolation).

The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The Endomorphism ring

Definition (Endomorphism ring)

$$\operatorname{End}(E) = \{0\} \cup \{\text{Isogenies } \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

The Deuring correspondence Overview of SQLign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The Endomorphism ring

Definition (Endomorphism ring)

$$\operatorname{End}(E) = \{0\} \cup \{\operatorname{Isogenies} \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)

Let E/\mathbb{F}_q ($p = char(\mathbb{F}_q)$). Then End(E) is either isomorphic to:

- An order in a quadratic imaginary field. We say that E is <u>ordinary</u>.
- A maximal order in a quaternion algebra ramifying at p and ∞. We say that E is supersingular.

The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The advantages of supersingular elliptic curves

• A strong security reduction.

Theorem (Wesolowski, 2022)

The problem of computing the endomorphism ring of any supersingular elliptic curve is equivalent to the isogeny problem between supersingular elliptic curves.

The Deuring correspondence Overview of SQIsign New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion Definition Some basic properties Computing isogenies The endomorphism ring

The advantages of supersingular elliptic curves

• A strong security reduction.

Theorem (Wesolowski, 2022)

The problem of computing the endomorphism ring of any supersingular elliptic curve is equivalent to the isogeny problem between supersingular elliptic curves.

- If *E* is supersingular, then it can be defined over \mathbb{F}_{p^2} .
- For isogeny computations, we control the the accessible torsion subgroups E[T] ⊆ E(F_p²) by controlling p.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

Quaternion algebra ramifying at *p* and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathscr{B}_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}k,$$

with

$$i^{2} = -1$$
 (if $p \equiv 3 \mod 4$), $j^{2} = -p$ and $k = ij = -ji$.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

Quaternion algebra ramifying at *p* and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathscr{B}_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}k,$$

with

$$i^{2} = -1$$
 (if $p \equiv 3 \mod 4$), $j^{2} = -p$ and $k = ij = -ji$.

- Order: A full rank lattice $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathscr{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

Quaternion algebra ramifying at *p* and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathscr{B}_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}k,$$

with

$$i^{2} = -1$$
 (if $p \equiv 3 \mod 4$), $j^{2} = -p$ and $k = ij = -ji$.

- **Order:** A full rank lattice $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathscr{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.
- Left Ideal: A left \mathcal{O} -ideal I is a full rank lattice $I \subset \mathscr{B}_{p,\infty}$ such that $\mathcal{O} \cdot I = I$.
- Right Ideal: A right *O*-ideal *I* is a full rank lattice *I* ⊂ *B*_{p,∞} such that *I* · *O* = *I*.

Recalls on quaternions

The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

Recalls on quaternions

The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

• Norm:
$$\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$$

Recalls on quaternions

The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

• **Norm:**
$$\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$$

- Ideal norm: $nrd(I) := gcd\{nrd(\alpha) \mid \alpha \in I\}$.
- Ideal conjugate: $\overline{I} := \{\overline{\alpha} \mid \alpha \in I\}.$

Recalls on quaternions

The Deuring correspondence in one slide The Deuring correspondence in cryptography

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

• **Norm:**
$$\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$$

- Ideal norm: $nrd(I) := gcd\{nrd(\alpha) \mid \alpha \in I\}$.
- Ideal conjugate: $\overline{I} := \{\overline{\alpha} \mid \alpha \in I\}.$
- Equivalent left \mathcal{O} -ideals: $I \sim J \iff \exists \alpha \in \mathscr{B}_{p,\infty}^*$, $J = I\alpha$.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left ${\mathscr O}$ -ideal and right ${\mathscr O}'$ -ideal I_{arphi}

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left ${\mathscr O} ext{-ideal}$ and right ${\mathscr O}' ext{-ideal}$ I_{arphi}
$\varphi, \psi: E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \big(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left ${\mathscr O}$ -ideal and right ${\mathscr O}'$ -ideal I_{arphi}
$\varphi, \psi: E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \big(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$
$\widehat{\varphi}$	$\overline{I_{arphi}}$

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left ${\mathscr O} ext{-ideal}$ and right ${\mathscr O}' ext{-ideal}$ I_{arphi}
$\varphi, \psi: E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \big(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$
$\widehat{\varphi}$	$\overline{l_{arphi}}$
$\varphi \circ \psi$	$I_{\psi} \cdot I_{\varphi}$

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left ${\mathscr O}$ -ideal and right ${\mathscr O}'$ -ideal I_{arphi}
$\varphi, \psi: E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \big(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$
\widehat{arphi}	$\overline{I_{arphi}}$
$\varphi \circ \psi$	$I_{m{\psi}}\cdot I_{m{arphi}}$
$deg(\varphi)$	$nrd(\mathit{I}_{arphi})$

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known endomorphism rings?

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known endomorphism rings?

General method:

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Translate *I* into an isogeny $\varphi_I : E_1 \longrightarrow E_2$.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known endomorphism rings?

General method:

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal / between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Translate *I* into an isogeny $\varphi_I : E_1 \longrightarrow E_2$.
- ✓ Takes polynomial time.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known endomorphism rings?

General method:

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal / between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Translate *I* into an isogeny $\varphi_I : E_1 \longrightarrow E_2$.
- \checkmark Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.

Recalls on quaternions The Deuring correspondence in one slide The Deuring correspondence in cryptography

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known endomorphism rings?

General method:

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal / between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Translate *I* into an isogeny $\varphi_I : E_1 \longrightarrow E_2$.
- \checkmark Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.

Problem: How to make the last step efficient?

Overview of SQIsign

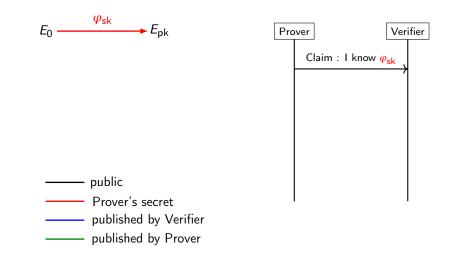
New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

Overview of SQIsign

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol

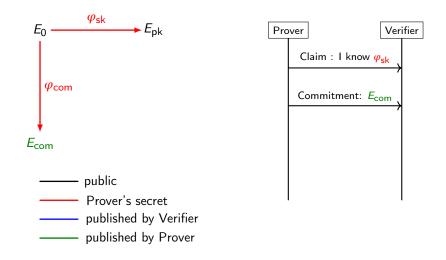
The old ideal to isogeny translation method A brief history of SQIsign



Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol

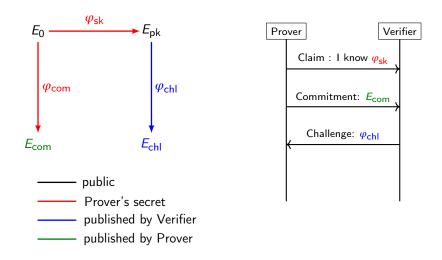
The old ideal to isogeny translation method A brief history of SQIsign



Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol

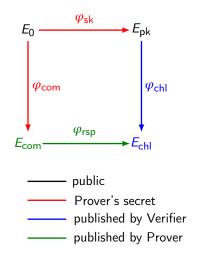
The old ideal to isogeny translation method A brief history of SQIsign

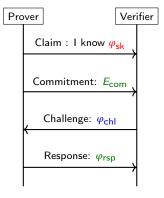


Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol

The old ideal to isogeny translation method A brief history of SQIsign



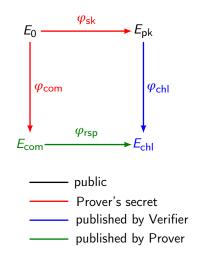


Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol

The old ideal to isogeny translation method A brief history of SQIsign

The SQIsign identification scheme

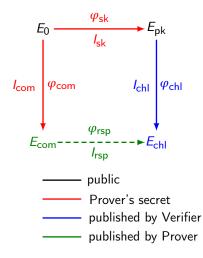


* φ_{rsp} should not factor through φ_{chl} .

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

Computing the response/signature

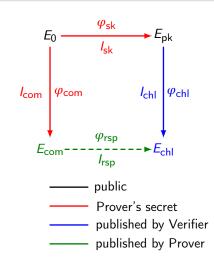


- φ_{rsp} = φ_{chl} ∘ φ_{sk} ∘ φ̂_{com} would neither be valid nor secure.
- Instead, use the Deuring correspondence.

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

Computing the response/signature

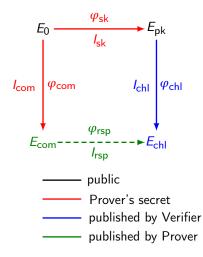


- $\varphi_{rsp} = \varphi_{chl} \circ \varphi_{sk} \circ \widehat{\varphi}_{com}$ would neither be valid nor secure.
- Instead, use the Deuring correspondence.
- Find I_{rsp} ~ *I*_{com} · I_{sk} · I_{chl} random and of smooth norm via [KLPT14].
- Translate $I_{\rm rsp}$ into $\varphi_{\rm rsp}$.

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

Computing the response/signature



- φ_{rsp} = φ_{chl} ∘ φ_{sk} ∘ φ̂_{com} would neither be valid nor secure.
- Instead, use the Deuring correspondence.
- Find I_{rsp} ~ *I*_{com} · I_{sk} · I_{chl} random and of smooth norm via [KLPT14].
- Translate I_{rsp} into φ_{rsp} .

X Slow in practice because of the orange steps.

The protocol The old ideal to isogeny translation method A brief history of SQIsign

The direct method [GPS20]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong End(E)$ and J a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_J : E \longrightarrow E_J$.

The protocol The old ideal to isogeny translation method A brief history of SQIsign

The direct method [GPS20]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong End(E)$ and J a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_J : E \longrightarrow E_J$.

Compute

$$\ker(\varphi_J) := \{ P \in E \mid \forall \alpha \in J, \quad \alpha(P) = 0 \}.$$

The protocol The old ideal to isogeny translation method A brief history of SQIsign

The direct method [GPS20]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong End(E)$ and J a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_J : E \longrightarrow E_J$.

• Compute

$$\ker(\varphi_J) := \{ P \in E \mid \forall \alpha \in J, \quad \alpha(P) = 0 \}.$$

 Then φ_J can be computed in O(polylog nrd(J)) operations over the field of definition F_{p^k} of ker(φ_J).

The protocol The old ideal to isogeny translation method A brief history of SQIsign

The direct method [GPS20]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong \operatorname{End}(E)$ and J a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_J : E \longrightarrow E_J$.

• Compute

$$\ker(\varphi_J) := \{ P \in E \mid \forall \alpha \in J, \quad \alpha(P) = 0 \}.$$

• Then φ_J can be computed in $O(\text{polylog} \operatorname{nrd}(J))$ operations over the field of definition \mathbb{F}_{p^k} of ker (φ_J) .

Issue: If J is a KLPT output, then $\operatorname{nrd}(J) \simeq p^{15/4} \gg p$ so the extension degree k is exponentially big. Not practical for SQISign !

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

The SQIsign method [FLLW23]

Main idea: Cut the computation into smaller pieces. Write

 $J = J_0 \cdot J_1 \cdots J_{n-1}$ and $\varphi_J = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $nrd(J_0) = \cdots = nrd(J_{n-1}) = 2^{f}$.

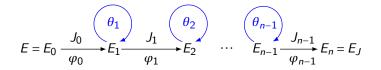
New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

The SQIsign method [FLLW23]

Main idea: Cut the computation into smaller pieces. Write

 $J = J_0 \cdot J_1 \cdots J_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $nrd(J_0) = \cdots = nrd(J_{n-1}) = 2^t$.



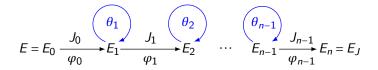
New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

The SQIsign method [FLLW23]

Main idea: Cut the computation into smaller pieces. Write

 $J = J_0 \cdot J_1 \cdots J_{n-1}$ and $\varphi_J = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $nrd(J_0) = \cdots = nrd(J_{n-1}) = 2^f$.



X This is slow in practice!

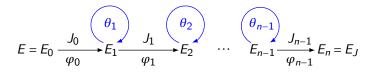
New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

The SQIsign method [FLLW23]

Main idea: Cut the computation into smaller pieces. Write

 $J = J_0 \cdot J_1 \cdots J_{n-1}$ and $\varphi_J = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $nrd(J_0) = \cdots = nrd(J_{n-1}) = 2^f$.



X This is slow in practice!

× Torsion requirements: deg($θ_i$) = T^2 coprime with 2, so we need $E[2^f T] ⊆ E(𝔽_{p^4})$. This constrains the choice of *p*.

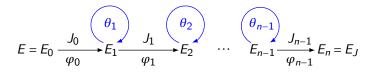
New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

The SQIsign method [FLLW23]

Main idea: Cut the computation into smaller pieces. Write

 $J = J_0 \cdot J_1 \cdots J_{n-1}$ and $\varphi_J = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $nrd(J_0) = \cdots = nrd(J_{n-1}) = 2^f$.



X This is slow in practice!

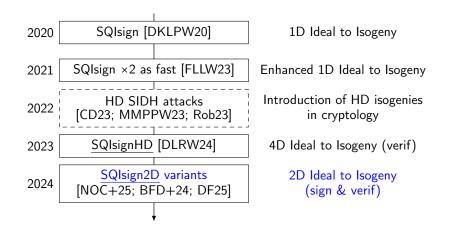
× Torsion requirements: deg($θ_i$) = T^2 coprime with 2, so we need $E[2^f T] ⊆ E(\mathbb{F}_{p^4})$. This constrains the choice of *p*.

 \checkmark Torsion requirements can be relaxed with intermediate steps θ_i in dimension 2 [ON24] but this is still not efficient enough.

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

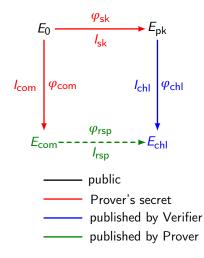
A brief history of SQIsign



Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

Response/signature in SQIsign



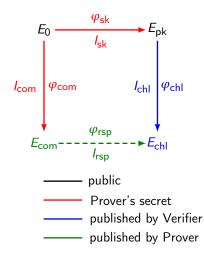
- $\varphi_{rsp} = \varphi_{chl} \circ \varphi_{sk} \circ \widehat{\varphi}_{com}$ would neither be valid nor secure.
- Instead, use the Deuring correspondence.
- Find I_{rsp} ~ *I*_{com} · I_{sk} · I_{chl} random and of smooth norm via [KLPT14].
- Translate I_{rsp} into φ_{rsp} .

X Slow in practice because of the orange steps.

Overview of SQIsign

New techniques for ideal to isogeny translations SQIsign2D-West: the fast, the small and the safer Conclusion The protocol The old ideal to isogeny translation method A brief history of SQIsign

Response/signature in SQIsignHD/2D



- $\varphi_{rsp} = \varphi_{chl} \circ \varphi_{sk} \circ \widehat{\varphi}_{com}$ would neither be valid nor secure.
- Instead, use the Deuring correspondence.
- Find I_{rsp} ~ *l*_{com} · I_{sk} · I_{chl} random and of smooth norm via [KLPT14] small norm ≃ √p.
- Translate I_{rsp} into φ_{rsp} .

 \checkmark Faster in practice with dimension 2 (or 4) isogenies.

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

New techniques for ideal to isogeny translations

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

$$\begin{array}{c} E_4 \xrightarrow{\varphi'} E_3 \\ \psi' & \stackrel{\frown}{\underset{E_1}{\longrightarrow}} & \stackrel{\frown}{\underset{\varphi}{\longleftarrow}} \\ \end{array}$$

s.t. $\deg(\varphi) = \deg(\varphi') = q$ and $\deg(\psi) = \deg(\psi') = r$ are coprime.

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

$$\begin{array}{c} E_4 \xrightarrow{\varphi'} E_3 \\ \psi' & \textcircled{} & \textcircled{} \\ E_1 \xrightarrow{\varphi} & E_2 \end{array}$$

s.t. $\deg(\varphi) = \deg(\varphi') = q$ and $\deg(\psi) = \deg(\psi') = r$ are coprime. Then the isogeny:

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

is a (q+r, q+r)-isogeny, i.e. $\tilde{\Phi} \circ \Phi = [q+r]$, and its kernel is:

$$\operatorname{ker}(\Phi) = \{ ([q]P, \psi \circ \varphi(P)) \mid P \in E_1[q+r] \}.$$

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

- Let φ: E₁ → E₂ be an isogeny of odd degree q < 2^e to be computed.
- Let $\psi: E_2 \longrightarrow E_3$ be an auxiliary isogeny of degree $r := 2^e q$.

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

- Let $\varphi: E_1 \longrightarrow E_2$ be an isogeny of odd degree $q < 2^e$ to be computed.
- Let $\psi: E_2 \longrightarrow E_3$ be an auxiliary isogeny of degree $r := 2^e q$.
- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

 $\operatorname{ker}(\Phi) = \{ ([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e] \}.$

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma (dimension 2) [Kan97]

- Let $\varphi: E_1 \longrightarrow E_2$ be an isogeny of odd degree $q < 2^e$ to be computed.
- Let $\psi: E_2 \longrightarrow E_3$ be an auxiliary isogeny of degree $r := 2^e q$.
- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

$$\operatorname{ker}(\Phi) = \{ ([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e] \}.$$

So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of e (2,2)-isogenies [DMPR25]:

$$E_1 \times E_3 \xrightarrow{\Phi_1} A_1 \xrightarrow{\Phi_2} A_2 \quad \cdots \quad A_{e-1} \xrightarrow{\Phi_e} E_2 \times E_4.$$

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma [Kan97] and efficient representations

• Knowing Φ , we can evaluate ϕ everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

• So $(\psi \circ \varphi(E_1[2^e]), q, e)$ is an efficient representation of φ (and ψ').

Kani's embedding lemma

Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Kani's lemma [Kan97] and efficient representations

• Knowing Φ , we can evaluate ϕ everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

So (ψ ∘ φ(E₁[2^e]), q, e) is an efficient representation of φ (and ψ').

The Power of Kani's lemma:

- A way to interpolate isogenies given their images on torsion points (led to SIDH attacks).
- Provides efficient representations on non-smooth degree isogenies.

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Exploiting an easy instance of the endomorphism ring problem [NO23]

Let $E_0: y^2 = x^3 + x$ defined over \mathbb{F}_p (with $2^e | p+1$ so that $E[2^e] \subseteq E(\mathbb{F}_{p^2})$).

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Exploiting an easy instance of the endomorphism ring problem [NO23]

Let $E_0: y^2 = x^3 + x$ defined over \mathbb{F}_p (with $2^e | p+1$ so that $E[2^e] \subseteq E(\mathbb{F}_{p^2})$). **Goal:** Given $u < 2^e$ odd, compute $\varphi: E_0 \longrightarrow E$ of degree u.

Idea: Exploit our knowledge of $End(E_0)$:

$$\mathsf{End}(E_0) = \mathbb{Z} \oplus \mathbb{Z} \iota \oplus \mathbb{Z} \frac{\iota + \pi_p}{2} \oplus \mathbb{Z} \frac{1 + \iota \circ \pi_p}{2},$$

where:

- $\iota: (x, y) \longmapsto (-x, \sqrt{-1}y)$ (corresponds to $i \in \mathscr{B}_{p,\infty}$, $i^2 = -1$);
- $\pi_p: (x, y) \mapsto (x^p, y^p)$ is the *p*-th Frobenius endomorphism (corresponds to $j \in \mathscr{B}_{p,\infty}, j^2 = -p$).

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Applying Kani's lemma [NO23]

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

• Compute a solution (x, y, z, t) to:

$$x^{2} + y^{2} + p(z^{2} + t^{2}) = u(2^{e} - u).$$

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Applying Kani's lemma [NO23]

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

• Compute a solution (x, y, z, t) to:

$$x^{2} + y^{2} + p(z^{2} + t^{2}) = u(2^{e} - u).$$

• Consider the endomorphism of degree $u(2^e - u)$:

$$\theta := x + y\iota + z\pi_p + t\iota \circ \pi_p \in \operatorname{End}(E_0).$$

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

Applying Kani's lemma [NO23]

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

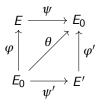
• Compute a solution (x, y, z, t) to:

$$x^{2} + y^{2} + p(z^{2} + t^{2}) = u(2^{e} - u).$$

• Consider the endomorphism of degree $u(2^e - u)$:

$$\theta := x + y\iota + z\pi_p + t\iota \circ \pi_p \in \operatorname{End}(E_0).$$

• Consider the commutative diagram:



with $\theta = \psi \circ \varphi$, deg $(\varphi) = u$ and deg $(\psi) = 2^e - u$.

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

The solution [NO23]

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

• By Kani's lemma, we have a $(2^e, 2^e)$ -isogeny

$$\Phi = \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} \colon E_0 \times E_0 \to E \times E'.$$

with kernel

$$\operatorname{ker}(\Phi) = \{ ([u]P, \theta(P)) \mid P \in E_0[2^e] \}.$$

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

The solution [NO23]

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

• By Kani's lemma, we have a $(2^e, 2^e)$ -isogeny

$$\Phi = \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} \colon E_0 \times E_0 \to E \times E'.$$

with kernel

$$\operatorname{ker}(\Phi) = \{ ([u]P, \theta(P)) \mid P \in E_0[2^e] \}.$$

• Knowing θ , we can compute ker(Φ) and Φ [DMPR25].

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

The solution [NO23]

Goal: Given $u < 2^e$ odd, compute $\varphi : E_0 \longrightarrow E$ of degree u.

• By Kani's lemma, we have a $(2^e, 2^e)$ -isogeny

$$\Phi = \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} \colon E_0 \times E_0 \to E \times E'.$$

with kernel

$$\operatorname{ker}(\Phi) = \{ ([u]P, \theta(P)) \mid P \in E_0[2^e] \}.$$

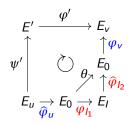
• Knowing θ , we can compute ker(Φ) and Φ [DMPR25].

• Φ efficiently represents $\varphi: E_0 \longrightarrow E$ of degree u.

Kani's embedding lemma Computing an isogeny of any degree from a special curve **Translating any ideal from a special curve** Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal $I \subseteq End(E_0)$ into an isogeny $\varphi_I : E_0 \longrightarrow E_I$.



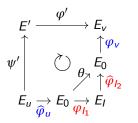
Find *l*₁, *l*₂ ~ *l* and *u*, *v* > 0 s.t. gcd(*u*nrd(*l*₁), *v*nrd(*l*₂)) = 1 and

 $\frac{u \operatorname{nrd}(l_1) + v \operatorname{nrd}(l_2) = 2^e.$

Kani's embedding lemma Computing an isogeny of any degree from a special curve **Translating any ideal from a special curve** Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal $I \subseteq End(E_0)$ into an isogeny $\varphi_I : E_0 \longrightarrow E_I$.



Find *l*₁, *l*₂ ~ *l* and *u*, *v* > 0 s.t. gcd(*u*nrd(*l*₁), *v*nrd(*l*₂)) = 1 and

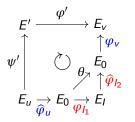
 $u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e.$

Compute a generator θ ∈ End(E₀) of l₁ l₂ = θ ⋅ End(E₀).

Kani's embedding lemma Computing an isogeny of any degree from a special curve **Translating any ideal from a special curve** Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal $I \subseteq End(E_0)$ into an isogeny $\varphi_I : E_0 \longrightarrow E_I$.



Find *l*₁, *l*₂ ~ *l* and *u*, *v* > 0 s.t. gcd(*u*nrd(*l*₁), *v*nrd(*l*₂)) = 1 and

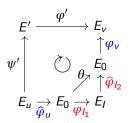
 $u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e.$

- Compute a generator θ ∈ End(E₀) of l₁ l₂ = θ ⋅ End(E₀).
- Compute isogenies $\varphi_u : E_0 \longrightarrow E_u$ and $\varphi_v : E_0 \longrightarrow E_v$ of degrees u, v.

Kani's embedding lemma Computing an isogeny of any degree from a special curve **Translating any ideal from a special curve** Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal $I \subseteq End(E_0)$ into an isogeny $\varphi_I : E_0 \longrightarrow E_I$.



Consider the $(2^e, 2^e)$ -isogeny

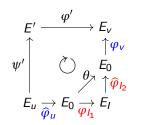
$$\Phi: E_{u} \times E_{v} \longrightarrow E_{I} \times E'$$

embedding $\varphi_{I_1} \circ \widehat{\varphi}_{U}$ and $\varphi_{V} \circ \widehat{\varphi}_{I_2}$.

Kani's embedding lemma Computing an isogeny of any degree from a special curve **Translating any ideal from a special curve** Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal $I \subseteq End(E_0)$ into an isogeny $\varphi_I : E_0 \longrightarrow E_I$.



Consider the $(2^e, 2^e)$ -isogeny

$$\Phi: E_u \times E_v \longrightarrow E_I \times E'$$

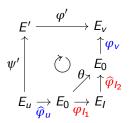
embedding $\varphi_{l_1} \circ \widehat{\varphi}_{u}$ and $\varphi_{v} \circ \widehat{\varphi}_{l_2}$.

• Use $\theta, \varphi_u, \varphi_v$ to compute ker(Φ) and then compute Φ .

Kani's embedding lemma Computing an isogeny of any degree from a special curve **Translating any ideal from a special curve** Translating an ideal from another curve

The Clapoti method (inspired from [PR23])

Goal: Translate any ideal $I \subseteq End(E_0)$ into an isogeny $\varphi_I : E_0 \longrightarrow E_I$.



Consider the $(2^e, 2^e)$ -isogeny

$$\Phi: E_{u} \times E_{v} \longrightarrow E_{I} \times E'$$

embedding $\varphi_{l_1} \circ \widehat{\varphi}_{u}$ and $\varphi_{v} \circ \widehat{\varphi}_{l_2}$.

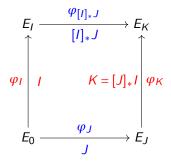
- Use $\theta, \varphi_u, \varphi_v$ to compute ker(Φ) and then compute Φ .
- Solution Evaluating Φ we can evaluate φ_{l_1} then φ_l (by the equivalence $l \sim l_1$).

 $\checkmark \Phi$ efficiently represents φ_l .

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

How to translate an ideal outside of $End(E_0)$?

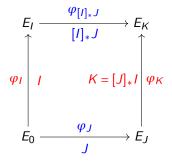
Goal: Given $\varphi_J : E_0 \longrightarrow E_J$ and $K = [J]_* I \subseteq \text{End}(E_J)$, compute $\varphi_K : E_J \longrightarrow E_K$.



Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

How to translate an ideal outside of $End(E_0)$?

Goal: Given $\varphi_J : E_0 \longrightarrow E_J$ and $K = [J]_*I \subseteq \text{End}(E_J)$, compute $\varphi_K : E_J \longrightarrow E_K$.



- Compute $L := J \cdot K \subseteq \text{End}(E_0)$.
- Compute $\varphi_L = \varphi_K \circ \varphi_J : E_0 \longrightarrow E_K$.
- Given φ_L and φ_J , we obtain φ_K .

Kani's embedding lemma Computing an isogeny of any degree from a special curve Translating any ideal from a special curve Translating an ideal from another curve

How to translate an ideal outside of $End(E_0)$?

Goal: Given $\varphi_J : E_0 \longrightarrow E_J$ and $K = [J]_*I \subseteq \text{End}(E_J)$, compute $\varphi_K : E_J \longrightarrow E_K$.

$$E_{I} \xrightarrow{\varphi[I]_{*J}} E_{K}$$

$$\varphi_{I} \qquad \uparrow \qquad I \qquad K = [J]_{*}I \qquad \varphi_{K}$$

$$E_{0} \xrightarrow{\varphi_{J}} E_{J}$$

- Compute $L := J \cdot K \subseteq \text{End}(E_0)$.
- Compute $\varphi_L = \varphi_K \circ \varphi_J : E_0 \longrightarrow E_K$.
- Given φ_L and φ_J , we obtain φ_K .

 \checkmark Efficient representations of φ_L and φ_J yield an efficient representation of φ_K .

Performance Security analysis

SQIsign2D-West: the fast, the small and the safer

Performance Security analysis

A dramatic improvement of time performance

Table: Comparison of time performance in 10⁶ CPU cycles of SQIsign (NIST round 1) on an Intel Xeon Gold 6338 CPU (Ice Lake) and SQIsign2D (NIST round 2) on an Intel Core i7-13700K CPU.

		NIST I	NIST III	NIST V
SQlsign	Key Gen.	2 834	21 359	84 944
	Signature	4 781	38 884	160 458
	Verification	103	687	2 051
SQIsign2D	Key Gen.	71.8	188.2	325.4
	Signature	163.1	427.0	751.8
	Verification	11.3	30.4	61.9

Performance Security analysis

Compactness slightly improved

Table: Comparison of key and signature sizes in bytes of SQIsign (NIST round 1) and SQIsign2D (NIST round 2).

		NIST I	NIST III	NIST V
	Pub. key	64	96	128
SQIsign	Priv. key	782	1138	1509
	Signature	177	263	335
SQIsign2D	Pub. key	65	97	129
	Priv. key	353	529	701
	Signature	148	224	292

Performance Security analysis

Fiat-Shamir transform

Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:

- Complete: a honest execution is always accepted by the verifier.
- **Sound:** an attacker cannot "guess" a response.
- **Zero-knowledge:** the response does not leak any information on the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable signature under chosen message attacks in the random oracle model.

Performance Security analysis

SQIsign security assumptions

	SQIsign	SQIsignHD	SQIsign2D	
Soundness	The Endomorphism Ring Problem (strong)			
Zero	 Heuristic on 	 An oracle returning 	• 2 oracles returning	
knowledge	the distribution	"random" isogenies.	"random" isogenies.	
	of φ_{rsp} .	 Heuristic on 		
		the distribution		
		of E _{com} (uniform).		

Conclusion

A bief history of SQIsign improvements

	SQIsign	SQIsignHD	SQIsign2D
Security	×	×√	\checkmark
proof			
Scalability	×	\checkmark	\checkmark
Signing time	×	$\checkmark\checkmark$	\checkmark
Compactness	\checkmark	\checkmark	\checkmark
Verification	\checkmark	×	\checkmark

Thanks for listening!

You can find my paper here:

A. Basso, P. Dartois, L. De Feo, A. Leroux, L. Maino, G. Pope, D. Robert and B. Wesolowski. SQlsign2D-West: The Fast, the Small, and the Safer. Asiacrypt 2024. https://eprint.iacr.org/2024/760

Appendix: some details

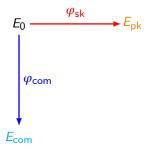
Key Generation

Public parameters: $p = c \cdot 2^e - 1$ with c small, E_0 of *j*-invariant 1728 and (P_0, Q_0) s.t. $E_0[2^e] = \langle P_0, Q_0 \rangle$.

Key Generation:

- Sample a left-ideal I_{sk} of $\mathcal{O}_0 \cong \text{End}(E_0)$ of big fixed norm N.
- Translate $I_{\rm sk}$ into $\varphi_{\rm sk}$ via AnyldealTolsogeny.
- $pk = E_{pk}$.
- $\mathsf{sk} = (I_{\mathsf{sk}}, \varphi_{\mathsf{sk}}(P_0), \varphi_{\mathsf{sk}}(Q_0)).$

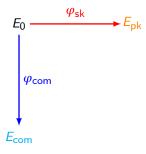
Commitment



Commitment:

- Sample a left-ideal *I*_{com} of *O*₀ ≅ End(*E*₀) of norm *N*.
- Translate *l*_{com} into φ_{com} via AnyldealTolsogeny.
- $\operatorname{com} = E_{\operatorname{com}}$.
- $sc = (I_{com}, \varphi_{com}(P_0), \varphi_{com}(Q_0)).$

Commitment



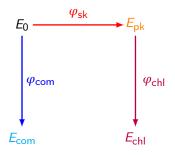
Commitment:

- Sample a left-ideal *I*_{com} of *O*₀ ≅ End(*E*₀) of norm *N*.
- Translate *l*_{com} into φ_{com} via AnyldealTolsogeny.
- $\operatorname{com} = E_{\operatorname{com}}$.
- $sc = (I_{com}, \varphi_{com}(P_0), \varphi_{com}(Q_0)).$

Differences with SQIsign(HD):

- $\deg(\varphi_{\rm sk})$ and $\deg(\varphi_{\rm com})$ are not smooth.
- The distribution of $E_{\rm com}$ (and $E_{\rm pk}$) is provably uniform.

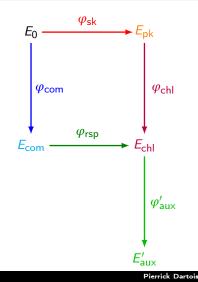
Challenge



Challenge:

- Sample $\varphi_{chl} : E_{pk} \longrightarrow E_{chl}$ of degree $2^e \simeq p$.
- In SQIsignHD, $\deg(\varphi_{chl}) \simeq \sqrt{p}$ was sufficient for the challenge space but we need $\deg(\varphi_{chl}) \simeq p$ here for security reasons.

Response



Response:

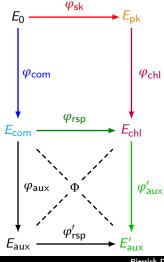
- Compute *I*_{chl} ⊂ End(*E*_{pk}) associated to φ_{chl} (SQIsignHD).
- $J \leftarrow \overline{I}_{com} \cdot I_{sk} \cdot I_{chl}$.
- Compute $I_{rsp} \sim J$ random of norm $q < 2^r \simeq \sqrt{p}$.
- *q* can be even (suppose it is odd for clarity).
- Sample $I''_{aux} \subseteq \mathcal{O}_0$ at random of norm $2^r q$.
- $I'_{aux} \leftarrow [I_{com} \cdot I_{rsp}]_* I''_{aux}$.

SQIsign2D-West

• Apply AnyldealTolsogeny to $I_{\text{com}} \cdot I_{\text{rsp}} \cdot I'_{\text{aux}}$ to compute E_{aux} and $\varphi'_{\text{aux}} \circ \varphi_{\text{rsp}} \circ \varphi_{\text{com}}(P_0, Q_0)$.

53 / 57

Response



Response:

• Compute the $(2^r, 2^r)$ -isogeny:

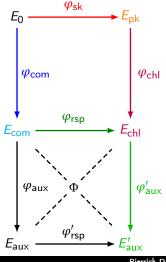
$$\Phi: E_{\mathsf{com}} \times E'_{\mathsf{aux}} \longrightarrow E_{\mathsf{chl}} \times E_{\mathsf{aux}}$$

of kernel:

 $\langle ([q]P_0, \varphi'_{\mathsf{aux}} \circ \varphi_{\mathsf{rsp}} \circ \varphi_{\mathsf{com}}(P_0)), \\ ([q]Q_0, \varphi'_{\mathsf{aux}} \circ \varphi_{\mathsf{rsp}} \circ \varphi_{\mathsf{com}}(Q_0)) \rangle.$

- Compute a deterministic basis (*P*_{chl}, *Q*_{chl}) of *E*_{chl}[2^{*r*}].
- Evaluate Φ to obtain $(P_{aux}, Q_{aux}) = [1/(2^r q)]\varphi_{aux} \circ \widehat{\varphi}_{rsp}(P_{chl}, Q_{chl}).$
- Return $(E_{aux}, P_{aux}, Q_{aux})$.

Verification



Verification:

- Compute a deterministic basis (*P*_{chl}, *Q*_{chl}) of *E*_{chl}[2^{*r*}].
- Compute the $(2^r, 2^r)$ -isogeny:

 $\widehat{\Phi}: E_{\mathsf{chl}} \times E_{\mathsf{aux}} \longrightarrow E_{\mathsf{com}} \times E'_{\mathsf{aux}}$

of kernel:

 $\langle (P_{chl}, P_{aux}), (Q_{chl}, Q_{aux}) \rangle.$

• Check its codomain is $E_{com} \times _$.

Definition (Uniform Target Oracle)

A uniform target oracle (UTO) is an oracle taking as input a supersingular elliptic curve E/\mathbb{F}_{p^2} and an integer $N = \Omega(\sqrt{p})$, and outputs a random isogeny $\varphi: E \to E'$ such that:

- The distribution of *E'* is uniform among all the supersingular elliptic curves.
- On The conditional distribution of φ given E' is uniform among isogenies E → E' of degree smaller or equal to N.

Definition (Fixed Degree Isogeny Oracle)

A fixed degree isogeny oracle (FIDIO) is an oracle taking as input a supersingular elliptic curve E/\mathbb{F}_{p^2} and an integer N, and outputs a uniformly random isogeny $\varphi: E \to E'$ with domain E and degree N.

Zero Knowledge Property

Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator \mathscr{S} with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator \mathscr{S} with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

Sketch of proof: Case when $q := \deg(\varphi_{rsp})$ is odd.

Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator \mathscr{S} with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

Sketch of proof: Case when $q := \deg(\varphi_{rsp})$ is odd.

• Generate an isogeny $\varphi_{chl}: E_{pk} \rightarrow E_{chl}$ according to the honest challenge distribution.

Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator \mathscr{S} with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

Sketch of proof: Case when $q := \deg(\varphi_{rsp})$ is odd.

- Generate an isogeny $\varphi_{chl}: E_{pk} \rightarrow E_{chl}$ according to the honest challenge distribution.
- Call the UTO on input $(E_{chl}, 2^e)$, resulting in the isogeny $\hat{\varphi}_{rsp} : E_{chl} \rightarrow E_{com}$.

Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator \mathscr{S} with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

Sketch of proof: Case when $q := \deg(\varphi_{rsp})$ is odd.

- Generate an isogeny $\varphi_{chl}: E_{pk} \rightarrow E_{chl}$ according to the honest challenge distribution.
- Call the UTO on input $(E_{chl}, 2^e)$, resulting in the isogeny $\hat{\varphi}_{rsp} : E_{chl} \rightarrow E_{com}$.
- Call the FIDIO on input $(E_{com}, 2^e q)$, resulting in the isogeny $\varphi_{aux} : E_{com} \rightarrow E_{aux}$.