
Introduction
The theory of theta functions

Computing isogenies with theta coordinates
Implementations for applications

Conclusion

Fast computation of higher dimensional isogenies
for cryptographic applications

Pierrick Dartois

Joint work with Luciano Maino, Giacomo Pope and Damien Robert

21 November 2024

Pierrick Dartois 1 / 52



Introduction
The theory of theta functions

Computing isogenies with theta coordinates
Implementations for applications

Conclusion

Isogenies between elliptic curves

Between elliptic curves, isogenies are non-zero morphisms of algebraic
groups.

φ

E1 E2

φ(P + Q) = φ(P) + φ(Q)
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Isogenies between abelian varieties

Abelian varieties are projective abelian group varieties, generalizing
elliptic curves.
Between abelian varieties, isogenies are morphisms which are
surjective and of finite kernel.
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Why (higher dimensional) isogenies matter

Quantum computers jeopardize current public key cryptography
(RSA, discrete logarithms...).
Isogenies are used in quantum-resistant cryptographic protocols.

Why higher dimensions?
Isogenies of dimensions 2, 4 (or 8) were used to break the
isogeny-based protocol SIDH (NIST candidate).
Higher dimensional isogenies are used as an interpolation tool.
They also have been used constructively in several protocols
(FESTA/QFESTA, SQIsignHD/2D/Prime, Scallop-HD, IS-CUBE,
3D hash function...).
We need fast implementations.
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Previous works and our contribution
Goal: Compute 2e-isogenies in dimension g ≥ 2.
[If f is a 2e-isogeny in dimension g , then #ker(f ) = 2eg .]

State of the art:
Several algorithms and implementations to compute 2e-isogenies in
dimension 2 with different models: Richelot [Smi06], Jacobian and
Kummer [Kun24].
Algorithms to compute ℓe-isogenies in any dimension g ≥ 2 with
theta coordinates of level n coprime with ℓ (ng coordinates) [LR12;
LR15; LR22]. Slow implementation in Magma (AVisogenies).

Our contribution:
An algorithm to compute 2e-isogenies in any dimension g ≥ 2 with
theta coordinates of level 2 (2g coordinates).
Fastest implementation in dimension 2.
Fast implementation in dimension 4.
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Theta structures
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Line bundles

Notations:
k : algebraically closed field.
A: abelian variety defined over k .
g := dim(A).

A line bundle L on A is a locally free sheaf of OA-modules of
rank 1.
Line bundles on A form a group for the tensor product.
Isomorphism classes of line bundles form the Picard group Pic(A).
Pic(A) ∼= {divisors on A modulo principal divisors}.
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Polarisations

Let:
Pic0(A) = {[L] ∈ Pic(A) | ∀a ∈ A(k), t∗aL ∼= L}

Pic0(A) ∼= Â(k) (k-rational points of Â).
If L is a line bundle on A, consider:

φL : A −→ Â

x ∈ A(k) 7−→ [t∗xL ⊗ L−1] ∈ Pic0(A)

When K (L) := ker(φL) is finite, φL is an isogeny and we say that:
L is ample.
φL is a polarisation of A.
(A,L) is a polarized abelian variety.

When φL is an isomorphism, (A,L) is a principally polarised abelian
variety (PPAV).

Pierrick Dartois 9 / 52
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Projective coordinates on polarised abelian varieties

We are looking for systems of coordinates on (A,L).
Idea: Take global sections s0, · · · , sn ∈ Γ(A,L) that generate L (i.e.
that generate L locally everywhere) and define:

A −→ Pn
k

x 7−→ ”(s0(x) : · · · : sn(x))”

Those sections are coordinates when the above map is an
embedding.

Theta functions form a family of global sections of Γ(A,L) with
"good arithmetic properties".
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The theta group

Let L be an ample line bundle on A.
Then, for every x ∈ K (L) = ker(φL), there is an isomorphism
ϕx : L ∼−→ t∗xL.
Given x , y ∈ K (L), we can consider the isomorphism:

L ϕx−−−→ t∗xL
t∗x ϕy−−−→ t∗x t

∗
yL = t∗x+yL.

This defines a group structure on:

G (L) = {(x , ϕx) | x ∈ K (L) and ϕx : L ∼−→ t∗xL},

given by (x , ϕx) · (y , ϕy ) = (x + y , t∗x ϕy ◦ ϕx).
G (L) is called the theta group of L.

Pierrick Dartois 11 / 52
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The commutator pairing

There is an exact sequence:

1 −→ k∗ −→ G (L) −→ K (L) −→ 0,

where the first arrow is λ 7−→ (0, λidL) and the last arrow is the
forgetful map ρL : (x , ϕx) 7−→ x .

G (L) does not commute and we measure the commutativity defect
via the commutator pairing.
Let x , y ∈ K (L) and x̃ , ỹ ∈ G (L) be lifts of x , y . Define:

eL(x , y) := x̃ · ỹ · x̃−1 · ỹ−1 ∈ k∗.

as the commutator pairing of x and y .
eL : K (L)× K (L) −→ k∗ is a non-degenerate skew-symmetric
bilinear map.

Pierrick Dartois 12 / 52
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Symplectic decomposition

A subgroup K ⊂ K (L) is isotropic if eL(x , y) = 1 for all x , y ∈ K .
K (L) induces a symplectic decomposition:

K (L) = K1(L)⊕ K2(L),

where K1(L) and K2(L) are maximal isotropic subgroups.
The map:

y ∈ K2(L) 7−→ eL(., y) ∈ K̂1(L) = Hom(K1(L), k∗)

is an isomorphism K2(L) ∼= K̂1(L).

Pierrick Dartois 13 / 52
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Symplectic decomposition
There exists a unique tuple of integers δ = (d1, · · · , dg ) such that:

d1| · · · |dg and g = dim(A);
K1(L) ∼= K1(δ) and K2(L) ∼= K2(δ).

Where:

K1(δ) :=
r∏

i=1

Z/diZ and K2(δ) := K̂1(δ) = Hom(K1(δ), k
∗).

We say that L has type δ.

K (δ) := K1(δ)⊕ K2(δ) can be equipped with a pairing
eδ : K (δ)× K (δ) −→ k∗.
There always exists a symplectic isomorphism σ : K (δ)

∼−→ K (L):

∀x , y ∈ K (δ), eL(σ(x), σ(y)) = eδ(x , y).

The Ki (L) := σ(Ki (δ)) form a symplectic decomposition of K (L).

Pierrick Dartois 14 / 52
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Theta structures
We define the Heisenberg group as H(δ) := k∗ × K (δ), with the
group law:

(α, x , χ) · (β, x ′, χ′) := (αβχ′(x), x + x ′, χχ′).

[Recall that K (δ) = K1(δ)⊕ K2(δ) with K2(δ) = Hom(K1(δ), k
∗),

so χ, χ′ are homorphisms K1(δ) −→ k∗].

A Theta structure is an isomorphism ΘL : H(δ)
∼−→ G (L)

inducing an isomorphism of exact sequences:

1 // k∗ // H(δ) //

ΘL

��

K (δ) //

ΘL
��

0

1 // k∗ // G (L) // K (L) // 0

In particular, ΘL : K (δ)
∼−→ K (L) is symplectic.

Pierrick Dartois 15 / 52
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Theta structures

Proposition

Theta structures always exist and are in bijection with triples (ΘL, s1, s2),
where:

ΘL is a symplectic isomorphism K (δ)
∼−→ K (L);

si are sections Ki (ΘL) = ΘL(Ki (δ))
∼−→ K̃i (L) ⊂ G (L).
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Action of the Heisenberg group

Let V (δ) be the space of functions K1(δ) −→ k .
H(δ) acts on V (δ) as follows:

(α, x , χ) · f : y 7−→ αχ(y)−1f (y − x),

for all f ∈ V (δ) and (α, x , χ) ∈ H(δ).

Theorem (Mumford, 1966)

Every irreducible representation of H(δ) on which k∗ acts naturally is
isomorphic to V (δ).

Pierrick Dartois 17 / 52
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Action of the Theta group

G (L) acts on the space of global sections Γ(A,L) as follows:

∀s ∈ Γ(A,L), (x , ϕx) ∈ G (L), (x , ϕx) · s = t∗−x(ϕx(s)).

Theorem (Mumford, 1966)

Γ(A,L) is an irreducible representation of G (L).

Hence, if L has type δ, there exists an isomorphism of
representations β : V (δ)

∼−→ Γ(A,L):

∀v ∈ V (δ), h ∈ H(δ), β(h · v) = ΘL(h) · β(v).

β is unique up to a multiplicative constant (by Shur’s lemma).

Pierrick Dartois 18 / 52
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Theta functions
Consider the basis of V (δ) given by Kronecker functions:

δi : j ∈ K1(δ) 7−→ δi,j =

{
1 if i = j
0 otherwise

for all i ∈ K1(δ).
Then the θLi := β(δi ) form the basis of theta functions on
(A,L,ΘL).
This basis is defined up to a multiplicative constant.

It defines a projective map:

A −→ P
d1···dg−1
k

x 7−→ (θLi (x))i∈K1(δ)

Main advantage of theta functions: the action G (L) ↷ Γ(A,L)
yields nice formulas on theta functions.

Pierrick Dartois 19 / 52
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Theta structures of level n

When L is of type δ = (n, · · · , n), we say L has level n.
Then K (L) = A[n] and there are ng theta functions (θLi )i∈(Z/nZ)g .

Theorem (Mumford, 1974)

When n ≥ 3, the map A −→ Png

k induced by theta functions
(θLi )i∈(Z/nZ)g is an embedding.

Theorem (Birkenhake, Lange, 2004)

When n = 2, the map KA −→ P2g

k induced by theta functions
(θLi )i∈(Z/2Z)g is an embedding, where KA := A/± is the Kummer
variety associated to A.

n = 2 gives the minimal number of coordinates (2g on the Kummer
variety).

Pierrick Dartois 20 / 52
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Generic evaluation algorithm
Computing the theta null point
Gluing 2-isogenies
Change of theta structure

Computing isogenies with theta coordinates
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Our goal
Change of level
Generic evaluation algorithm
Computing the theta null point
Gluing 2-isogenies
Change of theta structure

Polarised isogenies

Definition

A polarised isogeny f : (A,L) −→ (B,M) satisfies f ∗M ∼= L.

If f is such an isogeny, then we have:
f̂ ◦ φM ◦ f = φL.
f −1(K (M)) ⊆ K (L). The type δL is "bigger" than δM.
K := ker(f ) ⊂ K (L) is an isotropic subgroup (eL|K×K = 1).
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The isogeny theorem
Our goal
Change of level
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Descent theory

Let f : (A,L) −→ (B,M) be a polarised isogeny (f ∗M ∼= L).
Given an isomorphism α : f ∗M ∼−→ L, define a level subgroup:

K̃ := {(x , t∗xα ◦ α−1) | x ∈ K}.

K̃ ≃ K lifts K in G (L).
And α induces an isomorphism αf : Z (K̃ )/K̃

∼−→ G (M).

Theorem (Grothendieck)

There is a one to one correspondence between couples (f , α) and level
subgroups K̃ ⊂ G (L).
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Compatible Theta structures

Definition

Two theta-structures ΘL and ΘM on G (L) and G (M) respectively are
compatible when:

K̃ = (K̃ ∩ K̃1(ΘL))⊕ (K̃ ∩ K̃2(ΘL)).

αf maps Z (K̃ ) ∩ K̃i (ΘL) to K̃i (ΘM) for i ∈ {1, 2}.

Write K = K1 ⊕ K2 with Ki ⊆ Ki (ΘL) for i ∈ {1, 2}.
Let K⊥ = {x ∈ K (L) | ∀y ∈ K , eL(x , y) = 1}.
Write K⊥ = K⊥,1 ⊕ K⊥,2 with K⊥,i ⊆ Ki (ΘL) for i ∈ {1, 2}.

Proposition (Mumford, 1966)

There is a one to one correspondence between theta-structures ΘM on
G (M) compatible with ΘL and isomorphisms σ : K⊥,1/K1

∼−→ K1(δM).
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The isogeny theorem

Theorem (Mumford, 1966 and Robert, 2010)

Let ΘL and ΘM be compatible theta-structures on G (L) and G (M)
respectively and let σ : K⊥,1/K1

∼−→ K1(δM) be the isomorphism
induced by ΘM.
Then, there exists λ ∈ k∗ such that for all i ∈ K1(δM),

f ∗θMi = λ
∑

j∈Θ
−1
L (σ−1({i}))

θLj .
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Our goal
Let (A,L0) and (B,M0) be a principally polarised abelian varieties
(PPAVs).
An n-isogeny is a polarised isogeny f : (A,Ln

0) −→ (B,M0) i.e.
such that f ∗M0 ≃ Ln

0.
Then, we have:

f̂ ◦ φM0 ◦ f = φLn
0
= [n]φL0

And K = ker(f ) ⊆ K (Ln
0) = A[n].

Goal: When n = 2e , given K ⊂ A[2e ], compute f in level 2 theta
coordinates:

(θ
L2

0
i (x))i∈(Z/2Z)g 7−→ (θ

M2
0

i (f (x)))i∈(Z/2Z)g

Technicality: We shall need K ′ ⊂ A[2e+2] maximal isotropic such that
[4]K ′ = K .
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Decomposing the problem

f can be decomposed as a chain:

A0 = A
f1

A1
f2

A2 · · · Ae−1
fe

Ae = B

where fi : (Ai−1,L2
i−1) −→ (Ai ,Li ) is a 2-isogeny between PPAVs of

kernel [2e−i ]fi−1 ◦ · · · ◦ f1(K ) for all i ∈ J1 ; eK.

New goal: Let f : (A,L2
0) −→ (B,M0) be a 2-isogeny between PPAVs.

Given K = ker(f ) ⊂ A[2], compute f in level 2 theta coordinates:

(θ
L2

0
i (x))i∈(Z/2Z)g 7−→ (θ

M2
0

i (f (x)))i∈(Z/2Z)g

New technicality: We shall need K ′ ⊂ A[8] maximal isotropic such that
[4]K ′ = K .
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Applying the isogeny theorem

Let f : (A,L2
0) −→ (B,M0) be a 2-isogeny between PPAVs.

f is also a polarised isogeny (A,L2) −→ (B,M) where L := L2
0 and

M := M2
0 are of level 2.

Corollary (of the isogeny theorem)

Assume K = K2(ΘL). Then we can choose compatible theta structures
ΘL and ΘM such that:

∀i ∈ (Z/2Z)g , f ∗θMi = θL
2

2i i.e. θMi (f (x)) = θL
2

2i (x)

Problem: We know (θLi (x))i but not (θL
2

2i (x))i .
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Change of level

(A,L,ΘL)

(A,L2,ΘL2)

(B,M,ΘM)

f

isogeny thm.
change of level

Goal: Change of level (A,L,ΘL) −→ (A,L2,ΘL2).

We have some compatibility condition between (A,L2,ΘL2) and
(B,M,ΘM).
What compatibility condition do we have between (A,L,ΘL) and
(A,L2,ΘL2)?
First, ΘL and ΘL2 have to be symmetric (then ΘM is symmetric).
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Symmetric theta structures

Definition
A theta-structure ΘL is symmetric if ΘL ◦ D−1 = δ−1 ◦ΘL, where
D−1 ∈ Aut(H(δ)) and δ−1 ∈ Aut(G (L)) are maps that lift
[−1] : x −→ −x .

1 // k∗ // G (L)

δ−1

��

// K (L)

[−1]
��

// 0

1 // k∗ // G (L) // K (L) // 0

1 // k∗ // H(δ)

D−1

��

// K (δ)

[−1]
��

// 0

1 // k∗ // H(δ) // K (δ) // 0
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Compatible symmetric theta structures
Consider ε2 : G (L) −→ G (L2) and η2 : G (L2) −→ G (L):

1 // k∗

λ7→λ2

��

// G (L)

ε2

��

ρL // K (L)� _

��

// 0

1 // k∗ // G (L2)
ρL2 // K (L2) // 0

1 // k∗

λ7→λ2

��

// G (L2)

η2

��

ρL2 // K (L2)

[2]
��

// 0

1 // k∗ // G (L)
ρL // K (L) // 0

Let E2 : H(δ) −→ H(2δ) and H2 : H(2δ) −→ H(δ) their Heisenberg
group analogues.
We say that symmetric theta structures ΘL and ΘL2 are
compatible if ΘL2 ◦ E2 = ε2 ◦ΘL and ΘL ◦ H2 = η2 ◦ΘL2 .
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Differential addition and duplication formulas
For all χ ∈ ̂(Z/2Z)g and i ∈ K1(2δ), define:

UL2

χ,i :=
∑

t∈(Z/2Z)g
χ(t)θL

2

i+tδ

Theorem (Mumford, 1966 and Robert, 2010)

Assume ΘL and ΘL2 are symmetric and compatible. Let x , y ∈ A. Then
there exists λ1, λ2 ∈ k∗ such that for all i , j ∈ K1(2δ) such that i ≡ j

mod 2 and χ ∈ ̂(Z/2Z)g , we have:

θL(i+j)/2(x + y)θL(i−j)/2(x − y) = λ1

∑
χ∈ ̂(Z/2Z)g

UL2

χ,i (x)U
L2

χ,j (y)

UL2

χ,i (x)U
L2

χ,j (y) = λ2

∑
t∈(Z/2Z)g

χ(t)θL(i+j+tδ)/2(x + y)θL(i−j+tδ)/2(x − y).
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Differential addition and duplication formulas

These formulas yield:
A change of level algorithm to evaluate f :

(θLi (x))i 7−→ (θL
2

2i (x))i = (θMi (f (x)))i .

But also:
A duplication algorithm (θLi (x))i 7−→ (θLi (2x))i (useful for isogeny
chain computations).
A differential addition algorithm:

(θLi (x))i , (θ
L
i (y))i , (θ

L
i (x − y))i 7−→ (θLi (x + y))i .
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Evaluation algorithm

Proposition (D., Maino, Pope, Robert, 2023)

For all x ∈ A,

(θ̃Mi (f (x)))i ⋆ (θ̃
M
i (0B))i = H ◦ S((θLi (x))i ),

where (θ̃Mi (x))i := H((θMi (x))i ) and:

H is the Hadamard operator: (xi )i 7−→
(∑

i∈(Z/2Z)g (−1)⟨i|j⟩xi
)
j
.

S is the squaring operator (xi )i 7−→ (x2
i )i .

⋆ is the multiplication operator (xi )i , (yi )i 7−→ (xiyi )i .

A straightforward algorithm follows:

(θLi (x))i
H−→ ∗ S−→ ∗ ⋆(1/θ̃M

i (0B ))i−−−−−−−−−−−→ ∗ H−→ (θMi (f (x)))i

Problem: We don’t know the dual theta null point (θ̃Mi (0B))i .
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Computing the codomain theta null point

Proposition (D., Maino, Pope, Robert, 2023)

Let (T1, · · · ,Tg ) forming a maximal isotropic subgroup of A[8] such that
K = ⟨[4]T1, · · · , [4]Tg ⟩.
Then, for all l ∈ J1 ; gK and i ∈ (Z/2Z)g ,

θ̃Mi+el (0B) · H ◦ S((θLj (Tl))j)i = θ̃Mi (0B) · H ◦ S((θLj (Tl))j)i+el ,

where el = (0, · · · , 1, · · · , 0) with 1 at the l-th position.
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Computing the codomain theta null point: g = 2

Let (T1,T2) form an isotropic subgroup of A[8] such that
K = ⟨[4]T1, [4]T2⟩.
Let (α : β : γ : δ) be the dual theta null point.
Then, by the previous Proposition:

H ◦ S(θ00(T1), θ10(T1), θ01(T1), θ11(T1)) = (xα, xβ, yγ, yδ)

H ◦ S(θ00(T2), θ10(T2), θ01(T2), θ11(T2)) = (zα, tβ, zγ, tδ)

We can the compute (1 : β/α : γ/α : δ/α) as follows:

β

α
=

xβ

xα
,

γ

α
=

zγ

zα
,

δ

α
=

yδ

yγ
· γ
α
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Computing the codomain theta null point: g = 4
Example: dimension g = 4.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

We have:

θ̃M1000(0B)

θ̃M0000(0B)
=

H ◦ S((θLi (T1))i )1000

H ◦ S((θLi (T1))i )0000
,

θ̃M1100(0B)

θ̃M1000(0B)
=

H ◦ S((θLi (T2))i )1100

H ◦ S((θLi (T2))i )1000
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Computing the codomain theta null point: g = 4
Example: dimension g = 4.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

We have:

θ̃M1100(0B)

θ̃M0000(0B)
=

θ̃M1100(0B)

θ̃M1000(0B)
· θ̃

M
1000(0B)

θ̃M0000(0B)
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Computing the codomain theta null point: g = 4
Example: dimension g = 4.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

We finally obtain:(
1 :

θ̃M1000(0B)

θ̃M0000(0B)
:
θ̃M1100(0B)

θ̃M0000(0B)
:
θ̃M1010(0B)

θ̃M0000(0B)
: · · ·

)
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Zero dual theta constants
So far, we have assumed that θ̃Mi (0B) ̸= 0 for all i ∈ (Z/2Z)g .
Recall the evaluation algorithm:

(θLi (x))i
H−→ ∗ S−→ ∗ ⋆(1/θ̃M

i (0B ))i−−−−−−−−−−−→ ∗ H−→ (θMi (f (x)))i

What can we do when θ̃Mi (0B) = 0 for some i ∈ (Z/2Z)g?

We expect this to happen only during gluing steps:

f : A1 × A2 −→ B

Because level 2 theta coordinates encode points up to a sign, we are
computing:

(±x ,±y) 7−→ ±f (x , y)

We need additional information to lift the sign indetermination.
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Gluing evaluation algorithm

When some dual theta-constants vanish, we need additional data:

H ◦ S((θLi (x + T ))i ),

for some T ∈ A[4] such that [2]T ∈ K .
Idea: Using translates x + T shifts indices in the isogeny evaluation
formula so that we can avoid dividing by zero.

In dimension g = 2, translating by T := [2]T1 is sufficient.
In dimension g = 4, we use 2 translates T = [2]T1, [2]T2 are
sufficient (conjecture).

The same idea applies to codomain dual theta null point
computation.
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Put the kernel in the right place

So far, we have assumed that K = K2(ΘL).
This depends on the choice of theta structure ΘL on A and the
associated system of theta coordinates (θLi )i .
Idea: Change the theta Θ′

L so that K = K2(Θ
′
L).

Problem: How to compute the new theta coordinates (θ′
L
i )i?

Pierrick Dartois 42 / 52



Introduction
The theory of theta functions

Computing isogenies with theta coordinates
Implementations for applications

Conclusion

The isogeny theorem
Our goal
Change of level
Generic evaluation algorithm
Computing the theta null point
Gluing 2-isogenies
Change of theta structure

Theta structures are determined by symplectic basis

Theorem (Mumford, 1966)

Every symmetric theta-structure on G (L) is determined by a symplectic
isomorphism K (2δ) ∼−→ K (L2).

In other words, if ΘL is a level 2 theta structure, then it is determined by
a symplectic basis (S1, · · · ,Sg ,T1, · · · ,Tg ) of A[4].

Such a basis satisfies for some 4-th root of unity ζ4 ∈ k∗ and for all
l ,m ∈ J1 ; gK:

e4(Tl ,Tm) = e4(Sl ,Sm) = 1;

e4(Sl ,Tm) = ζ
δl,m
4 .

Besides, K1(ΘL) = ⟨[2]S1, · · · , [2]Sg ⟩ and K2(ΘL) = ⟨[2]T1, · · · , [2]Tg ⟩.
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Explicit change of coordinate formulas
Let (θLi )i be the original coordinates associated to a symplectic basis
B := (S1, · · · ,Tg ).
Let (θ′Li )i be the new coordinates associated to a symplectic basis
B′ := (S ′

1, · · · ,T ′
g ) with K = ⟨[2]T ′

1, · · · , [2]T ′
g ⟩ = K2(Θ

′
L).

Let the change of basis matrix from B to B′ := B ·M:

M :=

(
A C
B D

)
∈ Sp2g (Z/4Z)

Theorem (D., 2024)

There exists i0 ∈ K1(2) such that for all i ∈ (Z/2Z)g :

θ′
L
i = λ

∑
j∈(Z/2Z)g

ζ
⟨i|j⟩−⟨Ai+Cj+2i0|Bi+Dj⟩
4 θLAi+Cj+i0 ,

where ζ4 := e4(Sl ,Tl) = e4(S
′
l ,T

′
l ) for all l ∈ J1 ; gK.
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Summary: computing a 2e-isogeny chain
Goal: Compute the 2e-isogeny chain f : A0

f1−→ A1 · · ·Ae−1
fe−→ Ae

given K ′ ⊂ A0[2e+2] such that [4]K ′ = ker(f ).

Change theta coordinates on (A0,L0) to ensure that
ker(f1) = K2(ΘL0).

Compute the dual theta null point (θ̃L1
i (01))i of A1 using

K ′
1 := [2e−1]K ′.

Good news: We automatically have ker(f2) = K2(ΘL1), no need to
change the theta coordinates again.

Compute K ′
2 := [2e−2]f1(K

′).

Compute the dual theta null point (θ̃L2
i (02))i of A2 using K ′

2.

Proceed similarly to obtain the dual theta null point (θ̃L2
i (0j))i of Aj

for all j ≥ 3.
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In dimension 2 [DMPR23]

Goal: Compute a 2e-isogeny F : E1 × E2 −→ E3 × E4, given
K ′ ⊂ (E1 × E2)[2e+2] such that [4]K ′ = ker(f ) defined over Fp2 .

E1 × E2
gluing

A1 A2 · · · Ae−1
splitting

E3 × E4

After the splitting, a change of theta coordinates is necessary to
recover E3 × E4 as a product.
If we only know K = ker(f ) ⊂ (E1 × E2)[2e ], we can still compute F
at the expense of square root computations in the last two steps.
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In dimension 4

Implementation results in dimension 2 [DMPR23]

Table: Timings of a 2e-isogeny chain computation in dimension 2.

log2(p) 254 381 1293
e 126 208 632

Theta Rust 2.13 ms 9.05 ms 463 ms
Theta SageMath 108 ms 201 ms 1225 ms

Kummer SageMath 467 ms 858 ms 5150 ms
Jacobian SageMath 760 ms 1478 ms 9196 ms
Richelot SageMath 1028 ms 1998 ms 12840 ms
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Implementation results in dimension 2 [DMPR23]

Table: Timings of a 2e-isogeny evaluation in dimension 2.

log2(p) 254 381 1293
e 126 208 632

Theta Rust 161 µs 411 µs 17.8 ms
Theta SageMath 5.43 ms 8.68 ms 40.8 ms

Kummer SageMath 18.4 ms 31.4 ms 170 ms
Jacobian SageMath 66.7 ms 119 ms 593 ms
Richelot SageMath 114 ms 208 ms 1203 ms
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In dimension 4 [Dar24]

Goal: Compute a 2e-isogeny F : E 2
1 × E 2

2 −→ E 2
1 × E 2

2 , given
K ′ ⊂ (E 2

1 × E 2
2 )[2

e+2] such that [4]K ′ = ker(f ) defined over Fp2 .

E1 × E2

E1 × E2

gluings

A1

A1

B2 · · · Be−1
splitting

E 2
1 × E 2

1

Gluings are more technical to handle than in dimension 2.

We need to know K ′, K = ker(f ) is not sufficient.
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Implementation results in dimension 4 [Dar24]

Table: Timings in SageMath of a 2e-isogeny chain computation and evaluation
in dimension 4.

log2(p) 125 254 371
e 64 128 192

Computation 678 ms 1519 ms 2459 ms
Evaluation 25.9 ms 59.3 ms 107.7 ms

We expect an improvement by a factor 40 with a C implementation.
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Thanks for listening!
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