# SQIsign2D-West: the Fast, the Small, the Safer

Andrea Basso, <u>Pierrick Dartois</u>, Luca De Feo, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert and Benjamin Wesolowski

#### 2024, June 24



- 1 The Deuring correspondence
- Overview of SQIsign2D
- Translating ideals of non-smooth norm into isogenies
- Performance
- **5** Security analysis



| Supersingular elliptic curves    | Quaternions                                                                   |
|----------------------------------|-------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular | $\mathcal{O}\cong End(\mathcal{E})$ maximal order in $\mathcal{B}_{p,\infty}$ |

| Supersingular elliptic curves    | Quaternions                                                                   |
|----------------------------------|-------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular | $\mathcal{O}\cong End(\mathcal{E})$ maximal order in $\mathcal{B}_{p,\infty}$ |
| $\varphi: E \longrightarrow E'$  | left $\mathcal O$ -ideal and right $\mathcal O'$ -ideal $I_arphi$             |

| Supersingular elliptic curves                     | Quaternions                                                                                    |
|---------------------------------------------------|------------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular                  | $\mathcal{O}\cong End(\mathcal{E})$ maximal order in $\mathcal{B}_{p,\infty}$                  |
| $\varphi: \mathbf{E} \longrightarrow \mathbf{E}'$ | left $\mathcal O$ -ideal and right $\mathcal O'$ -ideal $\mathit I_arphi$                      |
| $\varphi, \psi: E \longrightarrow E'$             | $I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} lpha, \ lpha \in \mathcal{B}_{p,\infty})$ |

| Supersingular elliptic curves         | Quaternions                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular      | $\mathcal{O}\cong End(E)$ maximal order in $\mathcal{B}_{p,\infty}$                        |
| $\varphi: E \longrightarrow E'$       | left $\mathcal O$ -ideal and right $\mathcal O'$ -ideal $I_arphi$                          |
| $\varphi, \psi: E \longrightarrow E'$ | $I_{arphi} \sim I_{\psi} \ (I_{\psi} = I_{arphi} lpha, \ lpha \in \mathcal{B}_{p,\infty})$ |
| $\widehat{\varphi}$                   | $\overline{I_{arphi}}$                                                                     |

| Supersingular elliptic curves                     | Quaternions                                                                                |
|---------------------------------------------------|--------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular                  | $\mathcal{O}\cong End(\mathcal{E})$ maximal order in $\mathcal{B}_{p,\infty}$              |
| $\varphi: \mathbf{E} \longrightarrow \mathbf{E}'$ | left $\mathcal O$ -ideal and right $\mathcal O'$ -ideal $\mathit I_arphi$                  |
| $arphi,\psi: E \longrightarrow E'$                | $I_{arphi} \sim I_{\psi} \ (I_{\psi} = I_{arphi} lpha, \ lpha \in \mathcal{B}_{p,\infty})$ |
| $\widehat{arphi}$                                 | $\overline{I_{arphi}}$                                                                     |
| $\varphi\circ\psi$                                | $I_\psi \cdot I_arphi$                                                                     |

| Supersingular elliptic curves                     | Quaternions                                                                                |
|---------------------------------------------------|--------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular                  | $\mathcal{O}\cong End(E)$ maximal order in $\mathcal{B}_{p,\infty}$                        |
| $\varphi: \mathbf{E} \longrightarrow \mathbf{E}'$ | left $\mathcal O$ -ideal and right $\mathcal O'$ -ideal $I_arphi$                          |
| $\varphi, \psi: E \longrightarrow E'$             | $I_{arphi} \sim I_{\psi} \ (I_{\psi} = I_{arphi} lpha, \ lpha \in \mathcal{B}_{p,\infty})$ |
| $\widehat{arphi}$                                 | $\overline{I_{arphi}}$                                                                     |
| $\varphi\circ\psi$                                | $\textit{I}_{\psi}\cdot\textit{I}_{\varphi}$                                               |
| $deg(\varphi)$                                    | $nrd(\mathit{I}_{arphi}) = \sqrt{[\mathcal{O}:\mathit{I}_{arphi}]}$                        |

# Computing isogenies via the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

# Computing isogenies via the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

Old method:

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \text{End}(E_1)$  and  $\mathcal{O}_2 \cong \text{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J : E_1 \longrightarrow E_2$ .

# Computing isogenies via the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

Old method:

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \text{End}(E_1)$  and  $\mathcal{O}_2 \cong \text{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J : E_1 \longrightarrow E_2$ .

✓ Takes polynomial time.

# Computing isogenies via the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

Old method:

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \text{End}(E_1)$  and  $\mathcal{O}_2 \cong \text{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J : E_1 \longrightarrow E_2$ .
- $\checkmark$  Takes polynomial time.
- $\checkmark$  Becomes hard when End( $E_1$ ) or End( $E_2$ ) is unknown.

# Computing isogenies via the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

Old method:

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \text{End}(E_1)$  and  $\mathcal{O}_2 \cong \text{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J : E_1 \longrightarrow E_2$ .
- $\checkmark$  Takes polynomial time.
- $\checkmark$  Becomes hard when End( $E_1$ ) or End( $E_2$ ) is unknown.

**X** Slow in practice because of the red steps.

# Computing isogenies via the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

New method:

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \text{End}(E_1)$  and  $\mathcal{O}_2 \cong \text{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J : E_1 \longrightarrow E_2$  with higher dimension.
- $\checkmark$  Takes polynomial time.
- $\checkmark$  Becomes hard when End( $E_1$ ) or End( $E_2$ ) is unknown.
- $\checkmark$  Faster in practice with dimension 2 (or 4) isogenies.

Recalls on SQIsign New tools SQIsign2D

# Overview of SQIsign2D



Recalls on SQIsign New tools SQIsign2D





Recalls on SQIsign New tools SQIsign2D





Recalls on SQIsign New tools SQIsign2D

### New tools

SQIsignHD used dimension 4 isogenies to represent the response and came short of doing it in dimension 2. We now have the tools to do it.

#### New tools we use:

- RandlsogImages in QFESTA [NO23]: Starting from  $E_0$  s.t.  $j(E_0) = 1728$ , we can compute an isogeny  $\varphi : E_0 \longrightarrow *$  of given non-smooth degree.
- AnyldealTolsogeny: Starting from  $E_0$  translate <u>any</u> ideal  $I \subset \mathcal{O}_0 \cong \text{End}(E_0)$  into an isogeny  $\varphi_I : E_0 \longrightarrow *$  (inspired from Clapoti/QFESTA [PR23; NO23]).
- Sampling a random uniform ideal of fixed norm in any maximal quaternion order.

Recalls on SQIsign New tools SQIsign2D

### Efficient representation

#### Definition

Let  $\mathscr{A}$  be an algorithm and  $\varphi: E \longrightarrow E'$  be an isogeny defined over  $\mathbb{F}_q$ . An <u>efficient representation</u> of  $\varphi$  (with respect to  $\mathscr{A}$ ) is data  $D \in \{0, 1\}^*$  of polynomial size in  $\log(\deg(\varphi))$  and  $\log(q)$  such that, given D and  $P \in E(\mathbb{F}_{q^k})$ ,  $\mathscr{A}$  computes  $\varphi(P)$  in polynomial time in  $k \log(q)$  and  $\log(\deg(\varphi))$ .

Recalls on SQIsign New tools SQIsign2D

### Efficient representation

#### Definition

Let  $\mathscr{A}$  be an algorithm and  $\varphi: E \longrightarrow E'$  be an isogeny defined over  $\mathbb{F}_q$ . An <u>efficient representation</u> of  $\varphi$  (with respect to  $\mathscr{A}$ ) is data  $D \in \{0, 1\}^*$  of polynomial size in  $\log(\deg(\varphi))$  and  $\log(q)$  such that, given D and  $P \in E(\mathbb{F}_{q^k})$ ,  $\mathscr{A}$  computes  $\varphi(P)$  in polynomial time in  $k \log(q)$  and  $\log(\deg(\varphi))$ .

**Examples:** When  $deg(\varphi)$  is smooth:

- ker( $\varphi$ ).
- An isogeny chain of small degrees  $\varphi_1, \cdots, \varphi_e$  such that

$$\varphi = \varphi_e \circ \cdots \circ \varphi_1.$$

Recalls on SQIsign New tools SQIsign2D

# Efficient representation

#### Definition

Let  $\mathscr{A}$  be an algorithm and  $\varphi: E \longrightarrow E'$  be an isogeny defined over  $\mathbb{F}_q$ . An <u>efficient representation</u> of  $\varphi$  (with respect to  $\mathscr{A}$ ) is data  $D \in \{0, 1\}^*$  of polynomial size in  $\log(\deg(\varphi))$  and  $\log(q)$  such that, given D and  $P \in E(\mathbb{F}_{q^k})$ ,  $\mathscr{A}$  computes  $\varphi(P)$  in polynomial time in  $k \log(q)$  and  $\log(\deg(\varphi))$ .

**Examples:** When  $deg(\varphi)$  is smooth:

- ker( $\varphi$ ).
- An isogeny chain of small degrees  $\varphi_1, \cdots, \varphi_e$  such that

$$\varphi = \varphi_e \circ \cdots \circ \varphi_1.$$

And when  $deg(\varphi)$  is not smooth?

Recalls on SQIsign New tools SQIsign2D

# Kani's lemma (dimension 2)

Consider the following commutative diagram:

$$\begin{array}{c} E_4 \xrightarrow{\varphi'} E_3 \\ \psi' & \swarrow & \uparrow \psi \\ E_1 \xrightarrow{\varphi} & E_2 \end{array}$$

s.t.  $\deg(\varphi) = \deg(\varphi') = q$  and  $\deg(\psi) = \deg(\psi') = r$  are coprime.

Recalls on SQIsign New tools SQIsign2D

# Kani's lemma (dimension 2)

Consider the following commutative diagram:



s.t.  $\deg(\varphi) = \deg(\varphi') = q$  and  $\deg(\psi) = \deg(\psi') = r$  are coprime. Then the isogeny:

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

is a (q + r, q + r)-isogeny, i.e.  $\widetilde{\Phi} \circ \Phi = [q + r]$ , and its kernel is: ker $(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[q + r]\}.$ 

Recalls on SQIsign New tools SQIsign2D

### Kani's lemma (dimension 2)

- Let  $\varphi: E_1 \longrightarrow E_2$  be an isogeny of odd degree  $q < 2^e$  to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r := 2^e q$ .

Recalls on SQIsign New tools SQIsign2D

# Kani's lemma (dimension 2)

- Let φ : E<sub>1</sub> → E<sub>2</sub> be an isogeny of odd degree q < 2<sup>e</sup> to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r := 2^e q$ .
- Suppose we know  $\psi \circ \varphi(E_1[2^e])$ .
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

Recalls on SQIsign New tools SQIsign2D

# Kani's lemma (dimension 2)

- Let φ : E<sub>1</sub> → E<sub>2</sub> be an isogeny of odd degree q < 2<sup>e</sup> to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r := 2^e q$ .
- Suppose we know  $\psi \circ \varphi(E_1[2^e])$ .
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

• So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of e(2,2)-isogenies.

17 / 39

Recalls on SQIsign New tools SQIsign2D

# Kani's lemma (dimension 2)

- Let φ : E<sub>1</sub> → E<sub>2</sub> be an isogeny of odd degree q < 2<sup>e</sup> to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r := 2^e q$ .
- Suppose we know  $\psi \circ \varphi(E_1[2^e])$ .
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

• So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of e(2,2)-isogenies.

• Knowing  $\Phi$ , we can evaluate  $\varphi$  everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

Recalls on SQIsign New tools SQIsign2D

# Kani's lemma (dimension 2)

- Let  $\varphi: E_1 \longrightarrow E_2$  be an isogeny of odd degree  $q < 2^e$  to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r := 2^e q$ .
- Suppose we know  $\psi \circ \varphi(E_1[2^e])$ .
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of e(2,2)-isogenies.

• Knowing  $\Phi$ , we can evaluate  $\varphi$  everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

• So  $(\psi \circ \varphi(E_1[2^e]), q)$  is an <u>efficient representation</u> of  $\varphi$  (and  $\psi'$ ).

Recalls on SQIsign New tools SQIsign2D





**Public parameters:**  $p = c \cdot 2^e - 1$  with c small,  $E_0$  of j-invariant 1728 and  $(P_0, Q_0)$  s.t.  $E_0[2^e] = \langle P_0, Q_0 \rangle$ .

#### Key Generation:

- Sample a left-ideal *I*<sub>sk</sub> of
  *O*<sub>0</sub> ≅ End(*E*<sub>0</sub>) of big fixed norm *N*.
- Translate  $I_{\rm sk}$  into  $\varphi_{\rm sk}$  via AnyldealTolsogeny.
- $\mathsf{pk} = E_{\mathsf{pk}}$ .
- $\mathsf{sk} = (I_{\mathsf{sk}}, \varphi_{\mathsf{sk}}(P_0), \varphi_{\mathsf{sk}}(Q_0)).$

Recalls on SQIsign New tools SQIsign2D

### Commitment



#### Commitment:

- Sample a left-ideal  $I_{com}$  of  $\mathcal{O}_0 \cong \operatorname{End}(E_0)$  of norm N.
- Translate *I*<sub>com</sub> into φ<sub>com</sub> via AnyldealTolsogeny.
- $\operatorname{com} = E_{\operatorname{com}}$ .
- sc =  $(I_{com}, \varphi_{com}(P_0), \varphi_{com}(Q_0)).$

Recalls on SQIsign New tools SQIsign2D

### Commitment



#### Commitment:

- Sample a left-ideal  $I_{com}$  of  $\mathcal{O}_0 \cong \operatorname{End}(E_0)$  of norm N.
- Translate  $I_{\rm com}$  into  $\varphi_{\rm com}$  via AnyldealTolsogeny.
- $\operatorname{com} = E_{\operatorname{com}}$ .
- $sc = (I_{com}, \varphi_{com}(P_0), \varphi_{com}(Q_0)).$

#### Differences with SQIsign(HD):

- $\deg(\varphi_{\rm sk})$  and  $\deg(\varphi_{\rm com})$  are not smooth.
- The distribution of  $E_{\rm com}$  (and  $E_{\rm pk}$ ) is provably uniform.

Recalls on SQIsign New tools SQIsign2D

### Challenge



#### Challenge:

- Sample φ<sub>chl</sub> : E<sub>pk</sub> → E<sub>chl</sub> of degree 2<sup>e</sup> ≃ p.
- In SQIsignHD, deg( $\varphi_{chl}$ )  $\simeq \sqrt{p}$  was sufficient for the challenge space but we need deg( $\varphi_{chl}$ )  $\simeq p$  here for security reasons.

Recalls on SQIsign New tools SQIsign2D

### Response



#### Response:

 Compute *I*<sub>chl</sub> ⊂ End(*E*<sub>pk</sub>) associated to φ<sub>chl</sub> (SQIsignHD).

• 
$$J \longleftarrow \overline{I}_{com} \cdot I_{sk} \cdot I_{chl}$$
.

- Compute  $I_{\rm rsp} \sim J$  random of norm  $q < 2^r \simeq \sqrt{p}.$
- *q* can be even (suppose it is odd for clarity).
- Sample  $I''_{aux} \subseteq \mathcal{O}_0$  at random of norm  $2^r q$ .
- $I'_{\mathsf{aux}} \leftarrow [I_{\mathsf{com}} \cdot I_{\mathsf{rsp}}]_* I''_{\mathsf{aux}}.$
- Apply AnyldealTolsogeny to  $I_{com} \cdot I_{rsp} \cdot I'_{aux}$  to compute  $E_{aux}$  and  $\varphi'_{aux} \circ \varphi_{rsp} \circ \varphi_{com}(P_0, Q_0).$

et al. SQIsign2D-West

21 / 39

Recalls on SQIsign New tools SQIsign2D

### Response



#### **Response:**

- Compute the  $(2^r, 2^r)$ -isogeny:
  - $\Phi: E_{\mathsf{com}} \times E'_{\mathsf{aux}} \longrightarrow E_{\mathsf{chl}} \times E_{\mathsf{aux}}$

of kernel:

- $\langle ([q]P_0, \varphi_{\mathsf{aux}}' \circ \varphi_{\mathsf{rsp}} \circ \varphi_{\mathsf{com}}(P_0)), \\ ([q]Q_0, \varphi_{\mathsf{aux}}' \circ \varphi_{\mathsf{rsp}} \circ \varphi_{\mathsf{com}}(Q_0)) \rangle.$
- Compute a deterministic basis (*P*<sub>chl</sub>, *Q*<sub>chl</sub>) of *E*<sub>chl</sub>[2<sup>r</sup>].
- Evaluate  $\Phi$  to obtain  $(P_{aux}, Q_{aux}) = [1/(2^r q)]\varphi_{aux} \circ \hat{\varphi}_{rsp}(P_{chl}, Q_{chl}).$
- Return  $(E_{aux}, P_{aux}, Q_{aux})$ .

Recalls on SQIsign New tools SQIsign2D

### Verification



#### Verification:

- Compute a deterministic basis (*P*<sub>chl</sub>, *Q*<sub>chl</sub>) of *E*<sub>chl</sub>[2<sup>r</sup>].
- Compute the  $(2^r, 2^r)$ -isogeny:

$$\widehat{\Phi}: E_{\mathsf{chl}} imes E_{\mathsf{aux}} \longrightarrow E_{\mathsf{com}} imes E'_{\mathsf{aux}}$$

of kernel:

 $\langle (\mathit{P}_{\mathsf{chl}}, \mathit{P}_{\mathsf{aux}}), (\mathit{Q}_{\mathsf{chl}}, \mathit{Q}_{\mathsf{aux}}) \rangle.$ 

• Check its codomain is  $E_{\rm com} \times \_$ .

# Translating ideals of non-smooth norm into isogenies

# RandlsogImages [NO23]

**Input:** An odd number  $u < 2^e$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain *E* and the image  $\varphi(P_0, Q_0)$  of an isogeny  $\varphi: E_0 \longrightarrow E$  of degree *u*.

# RandlsogImages [NO23]

**Input:** An odd number  $u < 2^e$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain *E* and the image  $\varphi(P_0, Q_0)$  of an isogeny  $\varphi: E_0 \longrightarrow E$  of degree *u*.

• Compute  $\theta \in \mathcal{O}_0$  of norm  $u(2^e - u)$ .

# RandlsogImages [NO23]

**Input:** An odd number  $u < 2^e$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain *E* and the image  $\varphi(P_0, Q_0)$  of an isogeny  $\varphi: E_0 \longrightarrow E$  of degree *u*.

- Compute  $\theta \in \mathcal{O}_0$  of norm  $u(2^e u)$ .
- Consider the commutative diagram:



with  $\theta = \psi \circ \varphi$ , deg $(\varphi) = u$  and deg $(\psi) = 2^e - u$ .

# RandlsogImages [NO23]

• Compute  $\theta(P_0, Q_0)$  to obtain the kernel:

$$\ker(\Phi) = \{([u]P, \theta(P)) \mid P \in E_0[2^e]\}$$

of

$$\Phi = \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_0 \times E_0 \to E \times E'.$$

• Compute the  $(2^e, 2^e)$ -isogeny  $\Phi$  with the Theta model.

# RandlsogImages [NO23]

• Compute  $\theta(P_0, Q_0)$  to obtain the kernel:

$$\ker(\Phi) = \{([u]P, \theta(P)) \mid P \in E_0[2^e]\}$$

of

$$\Phi = egin{pmatrix} arphi & \widehat{\psi} \ -\psi' & \widehat{arphi'} \end{pmatrix} : E_0 imes E_0 o E imes E'.$$

- Compute the  $(2^e, 2^e)$ -isogeny  $\Phi$  with the Theta model.
- Compute  $\Phi(P_0, 0) = (\varphi(P_0), *)$  and  $\Phi(Q_0, 0) = (\varphi(Q_0), *)$ .
- Return E and  $\varphi(P_0, Q_0)$ .

# AnyIdealToIsogeny

**Input:** An ideal  $I \subset \mathcal{O}_0$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain  $E_I$  and the image  $\varphi_I(P_0, Q_0)$  of  $\varphi_I : E_0 \longrightarrow E_I$ .

# AnyIdealToIsogeny

**Input:** An ideal  $I \subset \mathcal{O}_0$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain  $E_I$  and the image  $\varphi_I(P_0, Q_0)$  of  $\varphi_I : E_0 \longrightarrow E_I$ .

• Find ideals  $l_1, l_2 \sim l$  of odd norms and  $u, v \in \mathbb{N}$  odd s.t. gcd $(u \operatorname{nrd}(l_1), v \operatorname{nrd}(l_2)) = 1$  and  $u \operatorname{nrd}(l_1) + v \operatorname{nrd}(l_2) = 2^e$ .

# AnyIdealToIsogeny

**Input:** An ideal  $I \subset \mathcal{O}_0$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain  $E_I$  and the image  $\varphi_I(P_0, Q_0)$  of  $\varphi_I : E_0 \longrightarrow E_I$ .

- Find ideals  $l_1, l_2 \sim l$  of odd norms and  $u, v \in \mathbb{N}$  odd s.t. gcd $(u \operatorname{nrd}(l_1), v \operatorname{nrd}(l_2)) = 1$  and  $u \operatorname{nrd}(l_1) + v \operatorname{nrd}(l_2) = 2^e$ .
- Use RandlsogImages of QFESTA to obtain the images of  $(P_0, Q_0)$  via isogenies  $\varphi_u : E_0 \longrightarrow E_u$  and  $\varphi_v : E_0 \longrightarrow E_v$  of degrees u and v.

# AnyIdealToIsogeny

**Input:** An ideal  $I \subset \mathcal{O}_0$  and a basis  $(P_0, Q_0)$  of  $E_0[2^e]$ .

**Output:** The codomain  $E_I$  and the image  $\varphi_I(P_0, Q_0)$  of  $\varphi_I : E_0 \longrightarrow E_I$ .

- Find ideals  $l_1, l_2 \sim l$  of odd norms and  $u, v \in \mathbb{N}$  odd s.t. gcd $(u \operatorname{nrd}(l_1), v \operatorname{nrd}(l_2)) = 1$  and  $u \operatorname{nrd}(l_1) + v \operatorname{nrd}(l_2) = 2^e$ .
- Use RandlsogImages of QFESTA to obtain the images of  $(P_0, Q_0)$  via isogenies  $\varphi_u : E_0 \longrightarrow E_u$  and  $\varphi_v : E_0 \longrightarrow E_v$  of degrees u and v.
- Let  $\beta_1, \beta_2 \in I$  s.t.  $I_1 = I\overline{\beta_1}/ \operatorname{nrd}(I)$  and  $I_2 = I\overline{\beta_2}/ \operatorname{nrd}(I)$ .
- Then  $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1} = \beta_2 \overline{\beta_1} / \operatorname{nrd}(I).$
- Compute  $\theta(P_0, Q_0)$ .

### AnyIdealTolsogeny

• Now, consider the Kani isogeny diamond:

$$\begin{array}{c} E' \xrightarrow{\widehat{\varphi'}_{v}} E_{v} \\ \varphi'_{u} & \uparrow \\ E_{u} \xrightarrow{\widehat{\varphi}_{u} \circ \varphi_{l_{1}}} E_{l} \end{array}$$

• And the 
$$(2^e, 2^e)$$
-isogeny:

$$\Phi := \begin{pmatrix} \varphi_{I_1} \circ \widehat{\varphi}_u & \varphi_{I_2} \circ \widehat{\varphi}_v \\ -\varphi'_u & \varphi'_v \end{pmatrix} : E_u \times E_v \longrightarrow E_I \times E'$$

# AnyIdealToIsogeny

• Now, consider the Kani isogeny diamond:

$$\begin{array}{c} E' \xrightarrow{\widehat{\varphi'}_{v}} E_{v} \\ \varphi'_{u} & \uparrow \\ E_{u} \xrightarrow{\widehat{\varphi}_{u} \circ \varphi_{l_{1}}} E_{l} \end{array}$$

$$\Phi := \begin{pmatrix} \varphi_{I_1} \circ \widehat{\varphi}_u & \varphi_{I_2} \circ \widehat{\varphi}_v \\ -\varphi'_u & \varphi'_v \end{pmatrix} : E_u \times E_v \longrightarrow E_I \times E'$$

• It has kernel:

 $\ker(\Phi) = \{([\operatorname{nrd}(I_1)]\varphi_u(P), \varphi_v \circ \theta(P)) \mid P \in E_0[2^e]\}$ 

- Using the images of θ, φ<sub>u</sub>, φ<sub>v</sub> of P<sub>0</sub>, Q<sub>0</sub> and some DLPs, we obtain ker(Φ).
- We then compute  $\Phi$  in the Theta model.

# AnyIdealToIsogeny

• The  $(2^e, 2^e)$ -isogeny:

$$\Phi := \begin{pmatrix} \varphi_{I_1} \circ \widehat{\varphi}_u & \varphi_{I_2} \circ \widehat{\varphi}_v \\ -\varphi'_u & \varphi'_v \end{pmatrix} : E_u \times E_v \longrightarrow E_I \times E'$$

represents  $\varphi_{I_1} \circ \widehat{\varphi}_u$  and we know  $\varphi_u(P_0, Q_0)$ .

- Hence, we can get  $\varphi_{I_1}(P_0, Q_0)$ .
- Besides,  $[nrd(I_1)]\varphi_I = \varphi_{I_1} \circ \beta_1$  so we can get  $\varphi_I(P_0, Q_0)$ .

The Deuring correspondence Overview of SQIsign2D Translating ideals of non-smooth norm into isogenies

#### Performance

Security analysis Conclusion

# Performance

The Deuring correspondence Overview of SQIsign2D Translating ideals of non-smooth norm into isogenies **Performance** 

Security analysis Conclusion

### Compactness, scalability, choice of prime

Table: Chosen parameters for SQIsign2D and SQIsignHD. Public key and signature sizes in bytes.

|           |           | NIST I                              | NIST III               | NIST V                 |
|-----------|-----------|-------------------------------------|------------------------|------------------------|
|           | Prime     | $5 \cdot 2^{248} - 1$               | $65 \cdot 2^{376} - 1$ | $27 \cdot 2^{500} - 1$ |
| SQIsign2D | Pub. key  | 66                                  | 98                     | 130                    |
|           | Signature | 148                                 | 222                    | 294                    |
|           | Prime     | $13 \cdot 2^{126} \cdot 3^{78} - 1$ |                        |                        |
| SQIsignHD | Pub. key  | 66                                  |                        |                        |
|           | Signature | 109                                 |                        | —                      |

The Deuring correspondence Overview of SQIsign2D Translating ideals of non-smooth norm into isogenies Performance

> Security analysis Conclusion

# Timings - rigorous version (in C)

Table: Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz), using generic finite field arithmetic (Fiat-Crypto), GMP 6.2.1. Turbo-boost disabled. Timings in 10<sup>6</sup> cycles.

|        | Level | SQIsign | SQIsignHD | SQIsign2D |
|--------|-------|---------|-----------|-----------|
|        | I     | 2,800   | 190       | 120       |
| Keygen | III   | 21,300  |           | 440       |
|        | V     | 91,600  |           | 1,070     |
|        | I     | 4,600   | 115       | 290       |
| Sign   | III   | 39,300  |           | 1,040     |
|        | V     | 165,000 |           | 2,490     |
|        | I     | 93      |           | 25        |
| Verify | III   | 641     |           | 98        |
|        | V     | 2,080   | —         | 247       |

The Deuring correspondence Overview of SQIsign2D Translating ideals of non-smooth norm into isogenies Performance

> Security analysis Conclusion

Timings - heuristic version (in C, optimized arithmetic)

Table: Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz), with finite field arithmetic optimised using intrinsics for the Ice Lake architecture, GMP 6.2.1. Turbo-boost disabled. Timings in 10<sup>6</sup> cycles.

|        | Level | SQIsign | SQIsign   | SQIsign2D | SQlsign2D-H |
|--------|-------|---------|-----------|-----------|-------------|
|        |       | (NIST)  | (EC 2023) |           |             |
|        | I     | 1,700   | 400       | 60        | 58          |
| Keygen | - 111 |         |           | 170       | 170         |
|        | V     |         |           | 360       | 350         |
|        | I     | 2,400   | 1880      | 160       | 100         |
| Sign   | - 111 |         |           | 460       | 280         |
| V      | V     |         |           | 940       | 570         |
|        | I     | 39      | 29        | 9         | 9           |
| Verify |       |         |           | 29        | 29          |
|        | V     | —       |           | 62        | 60          |

### Security analysis

# Fiat-Shamir transform

#### Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:

- Complete: a honest execution is always accepted by the verifier.
- **Sound:** an attacker cannot "guess" a response.
- **Zero-knowledge:** the response does not leak any information on the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable signature under chosen message attacks in the random oracle model.

# Zero Knowledge Property

#### Definition (Uniform Target Oracle)

A uniform target oracle (UTO) is an oracle taking as input a supersingular elliptic curve  $E/\mathbb{F}_{p^2}$  and an integer  $N = \Omega(\sqrt{p})$ , and outputs a random isogeny  $\varphi : E \to E'$  such that:

- The distribution of E' is uniform among all the supersingular elliptic curves.
- One of the conditional distribution of φ given E' is uniform among isogenies E → E' of degree smaller or equal to N.

#### Definition (Fixed Degree Isogeny Oracle)

A fixed degree isogeny oracle (FIDIO) is an oracle taking as input a supersingular elliptic curve  $E/\mathbb{F}_{p^2}$  and an integer N, and outputs a uniformly random isogeny  $\varphi: E \to E'$  with domain E and degree N.

### Zero Knowledge Property

#### Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator S with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

### Zero Knowledge Property

#### Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator S with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

**Sketch of proof:** Case when  $q := deg(\varphi_{rsp})$  is odd.

# Zero Knowledge Property

#### Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator S with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

**Sketch of proof:** Case when  $q := deg(\varphi_{rsp})$  is odd.

• Generate an isogeny  $\varphi_{chl}: E_{pk} \to E_{chl}$  according to the honest challenge distribution.

# Zero Knowledge Property

#### Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator S with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

**Sketch of proof:** Case when  $q := deg(\varphi_{rsp})$  is odd.

- Generate an isogeny  $\varphi_{chl}: E_{pk} \to E_{chl}$  according to the honest challenge distribution.
- Call the UTO on input  $(E_{chl}, 2^e)$ , resulting in the isogeny  $\widehat{\varphi}_{rsp} : E_{chl} \to E_{com}$ .

# Zero Knowledge Property

#### Theorem

The identification protocol is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there exists a polynomial time simulator S with access to a UTO and a FIDIO that produces random transcripts which are statistically indistinguishable from honest transcripts.

**Sketch of proof:** Case when  $q := deg(\varphi_{rsp})$  is odd.

- Generate an isogeny  $\varphi_{chl}: E_{pk} \to E_{chl}$  according to the honest challenge distribution.
- Call the UTO on input  $(E_{chl}, 2^e)$ , resulting in the isogeny  $\widehat{\varphi}_{rsp} : E_{chl} \to E_{com}$ .
- Call the FIDIO on input  $(E_{com}, 2^e q)$ , resulting in the isogeny  $\varphi_{aux} : E_{com} \to E_{aux}$ .

# Conclusion

Welcoming a new member to the SQIsign family

|                | SQlsign      | SQlsignHD    | SQIsign2D    |
|----------------|--------------|--------------|--------------|
| Security       | ×            | ×√           | $\checkmark$ |
| proof          |              |              |              |
| Scalability    | ×            | $\checkmark$ | $\checkmark$ |
| Signing time   | ×            | $\checkmark$ | $\checkmark$ |
| Signature size | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Verification   | $\checkmark$ | ×            | $\checkmark$ |