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The Deuring correspondence

Supersingular elliptic curves Quaternions

j(E ) or j(E )p supersingular O ∼= End(E ) maximal order in Bp,∞

φ : E −→ E ′ left O-ideal and right O′-ideal Iφ

φ,ψ : E −→ E ′ Iφ ∼ Iψ (Iψ = Iφα, α ∈ Bp,∞)

φ̂ Iφ

φ ◦ ψ Iψ · Iφ
deg(φ) nrd(Iφ) =

√
[O : Iφ]
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Computing isogenies via the Deuring correspondence
Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Old method:
Let E1 and E2 of known endomorphism rings O1 ∼= End(E1) and
O2 ∼= End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I of smooth norm via [KLPT14].
Translate J into an isogeny φJ : E1 −→ E2.

✓ Takes polynomial time.

✓ Becomes hard when End(E1) or End(E2) is unknown.
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Computing isogenies via the Deuring correspondence
Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Old method:
Let E1 and E2 of known endomorphism rings O1 ∼= End(E1) and
O2 ∼= End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I of smooth norm via [KLPT14].
Translate J into an isogeny φJ : E1 −→ E2.

✓ Takes polynomial time.

✓ Becomes hard when End(E1) or End(E2) is unknown.

✗ Slow in practice because of the red steps.
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Computing isogenies via the Deuring correspondence
Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

New method:
Let E1 and E2 of known endomorphism rings O1 ∼= End(E1) and
O2 ∼= End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I of smooth norm via [KLPT14].
Translate J into an isogeny φJ : E1 −→ E2 with higher dimension.

✓ Takes polynomial time.

✓ Becomes hard when End(E1) or End(E2) is unknown.

✓ Faster in practice with dimension 2 (or 4) isogenies.
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New tools
SQIsign2D

Overview of SQIsign2D
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The SQIsign identification scheme

E0

φsk
Epk

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Claim : I know φsk
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The SQIsign identification scheme

E0

φsk
Epk

φcom

Ecom

φchl

Echl

φrsp

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Accept if
φrsp is correct

Claim : I know φsk

Commitment: Ecom

Challenge: φchl

Response: φrsp
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New tools

SQIsignHD used dimension 4 isogenies to represent the response and
came short of doing it in dimension 2. We now have the tools to do it.

New tools we use:
RandIsogImages in QFESTA [NO23]: Starting from E0 s.t.
j(E0) = 1728, we can compute an isogeny φ : E0 −→ ∗ of given
non-smooth degree.
AnyIdealToIsogeny: Starting from E0 translate any ideal
I ⊂ O0 ∼= End(E0) into an isogeny φI : E0 −→ ∗ (inspired from
Clapoti/QFESTA [PR23; NO23]).
Sampling a random uniform ideal of fixed norm in any maximal
quaternion order.
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Efficient representation

Definition

Let A be an algorithm and φ : E −→ E ′ be an isogeny defined over Fq.
An efficient representation of φ (with respect to A ) is data D ∈ {0, 1}∗
of polynomial size in log(deg(φ)) and log(q) such that, given D and
P ∈ E (Fqk ), A computes φ(P) in polynomial time in k log(q) and
log(deg(φ)).

Examples: When deg(φ) is smooth:
ker(φ).
An isogeny chain of small degrees φ1, · · · , φe such that

φ = φe ◦ · · · · · ·φ1.

And when deg(φ) is not smooth?
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Kani’s lemma (dimension 2)
Consider the following commutative diagram:

E1

E4 E3

E2
φ

ψψ′

φ′

⟳

s.t. deg(φ) = deg(φ′) = q and deg(ψ) = deg(ψ′) = r are coprime.

Then
the isogeny:

Φ :=

(
φ ψ̂

−ψ′ φ̂′

)
: E1 × E3 −→ E2 × E4

is a (q + r , q + r)-isogeny, i.e. Φ̃ ◦ Φ = [q + r ], and its kernel is:

ker(Φ) = {([q]P, ψ ◦ φ(P)) | P ∈ E1[q + r ]}.
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Kani’s lemma (dimension 2)
Let φ : E1 −→ E2 be an isogeny of odd degree q < 2e to be
computed.
Let ψ : E2 −→ E3 be an auxiliary isogeny of degree r := 2e − q.

Suppose we know ψ ◦ φ(E1[2e ]).
Then we can compute:

ker(Φ) = {([q]P, ψ ◦ φ(P)) | P ∈ E1[2e ]}.
So we can compute

Φ :=

(
φ ψ̂

−ψ′ φ̂′

)
: E1 × E3 −→ E2 × E4

as a chain of e (2, 2)-isogenies.
Knowing Φ, we can evaluate φ everywhere:

Φ(P, 0) = (φ(P),−ψ′(P)).

So (ψ ◦ φ(E1[2e ]), q) is an efficient representation of φ (and ψ′).

A. Basso, P. Dartois et al. SQIsign2D-West 17 / 39
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Key Generation

E0

φsk
Epk

Public parameters: p = c · 2e − 1 with
c small, E0 of j-invariant 1728 and
(P0,Q0) s.t. E0[2e ] = ⟨P0,Q0⟩.

Key Generation:
Sample a left-ideal Isk of
O0 ∼= End(E0) of big fixed norm N.
Translate Isk into φsk via
AnyIdealToIsogeny.
pk = Epk.
sk = (Isk, φsk(P0), φsk(Q0)).
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Commitment

E0

φsk
Epk

φcom

Ecom

Commitment:
Sample a left-ideal Icom of
O0 ∼= End(E0) of norm N.
Translate Icom into φcom via
AnyIdealToIsogeny.
com = Ecom.
sc = (Icom, φcom(P0), φcom(Q0)).

Differences with SQIsign(HD):
deg(φsk) and deg(φcom) are not
smooth.
The distribution of Ecom (and Epk)
is provably uniform.
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Challenge

E0

φsk
Epk

φcom

Ecom

φchl

Echl

Challenge:
Sample φchl : Epk −→ Echl of
degree 2e ≃ p.
In SQIsignHD, deg(φchl) ≃

√
p was

sufficient for the challenge space
but we need deg(φchl) ≃ p here for
security reasons.
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Response

E0

φsk
Epk

φcom

Ecom

φchl

Echl

φrsp

φ′
aux

E ′
aux

Response:
Compute Ichl ⊂ End(Epk)
associated to φchl (SQIsignHD).
J ←− I com · Isk · Ichl.
Compute Irsp ∼ J random of norm
q < 2r ≃ √p.
q can be even (suppose it is odd
for clarity).
Sample I ′′aux ⊆ O0 at random of
norm 2r − q.
I ′aux ←− [Icom · Irsp]∗I ′′aux.
Apply AnyIdealToIsogeny to
Icom · Irsp · I ′aux to compute Eaux and
φ′

aux ◦ φrsp ◦ φcom(P0,Q0).
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Recalls on SQIsign
New tools
SQIsign2D

Response

E0

φsk
Epk

φcom

Ecom

φchl

Echl

φrsp

φ′
aux

E ′
aux

φaux

Eaux

φ′
rsp

Φ

Response:
Compute the (2r , 2r )-isogeny:

Φ : Ecom × E ′
aux −→ Echl × Eaux

of kernel:

⟨([q]P0, φ
′
aux ◦ φrsp ◦ φcom(P0)),

([q]Q0, φ
′
aux ◦ φrsp ◦ φcom(Q0))⟩.

Compute a deterministic basis
(Pchl,Qchl) of Echl[2r ].
Evaluate Φ to obtain (Paux,Qaux) =
[1/(2r − q)]φaux ◦ φ̂rsp(Pchl,Qchl).
Return (Eaux,Paux,Qaux).
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Recalls on SQIsign
New tools
SQIsign2D

Verification

E0

φsk
Epk

φcom

Ecom

φchl

Echl

φrsp

φ′
aux

E ′
aux

φaux

Eaux

φ′
rsp

Φ

Verification:
Compute a deterministic basis
(Pchl,Qchl) of Echl[2r ].
Compute the (2r , 2r )-isogeny:

Φ̂ : Echl × Eaux −→ Ecom × E ′
aux

of kernel:

⟨(Pchl,Paux), (Qchl,Qaux)⟩.

Check its codomain is Ecom ×_.
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Translating ideals of non-smooth norm into
isogenies
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RandIsogImages [NO23]

Input: An odd number u < 2e and a basis (P0,Q0) of E0[2e ].

Output: The codomain E and the image φ(P0,Q0) of an isogeny
φ : E0 −→ E of degree u.

Compute θ ∈ O0 of norm u(2e − u).
Consider the commutative diagram:

E0

E E0

E ′

φ

ψ

ψ′

φ′θ

with θ = ψ ◦ φ, deg(φ) = u and deg(ψ) = 2e − u.
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RandIsogImages [NO23]

Compute θ(P0,Q0) to obtain the kernel:

ker(Φ) = {([u]P, θ(P)) | P ∈ E0[2e ]}

of

Φ =

(
φ ψ̂

−ψ′ φ̂′

)
: E0 × E0 → E × E ′.

Compute the (2e , 2e)-isogeny Φ with the Theta model.

Compute Φ(P0, 0) = (φ(P0), ∗) and Φ(Q0, 0) = (φ(Q0), ∗).
Return E and φ(P0,Q0).
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AnyIdealToIsogeny

Input: An ideal I ⊂ O0 and a basis (P0,Q0) of E0[2e ].

Output: The codomain EI and the image φI (P0,Q0) of φI : E0 −→ EI .

Find ideals I1, I2 ∼ I of odd norms and u, v ∈ N odd s.t.
gcd(u nrd(I1), v nrd(I2)) = 1 and u nrd(I1) + v nrd(I2) = 2e .
Use RandIsogImages of QFESTA to obtain the images of (P0,Q0)
via isogenies φu : E0 −→ Eu and φv : E0 −→ Ev of degrees u and v .
Let β1, β2 ∈ I s.t. I1 = Iβ1/ nrd(I ) and I2 = Iβ2/ nrd(I ).
Then θ := φ̂I2 ◦ φI1 = β2β1/ nrd(I ).
Compute θ(P0,Q0).
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AnyIdealToIsogeny
Now, consider the Kani isogeny diamond:

E ′ φ̂′
v // Ev

Eu

φ′
u

OO

φ̂u◦φI1 // EI

φv◦φ̂I2

OO

And the (2e , 2e)-isogeny:

Φ :=

(
φI1 ◦ φ̂u φI2 ◦ φ̂v

−φ′
u φ′

v

)
: Eu × Ev −→ EI × E ′

It has kernel:

ker(Φ) = {([nrd(I1)]φu(P), φv ◦ θ(P)) | P ∈ E0[2e ]}
Using the images of θ, φu, φv of P0,Q0 and some DLPs, we obtain
ker(Φ).
We then compute Φ in the Theta model.
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AnyIdealToIsogeny

The (2e , 2e)-isogeny:

Φ :=

(
φI1 ◦ φ̂u φI2 ◦ φ̂v

−φ′
u φ′

v

)
: Eu × Ev −→ EI × E ′

represents φI1 ◦ φ̂u and we know φu(P0,Q0).
Hence, we can get φI1(P0,Q0).
Besides, [nrd(I1)]φI = φI1 ◦ β1 so we can get φI (P0,Q0).
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Performance
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Compactness, scalability, choice of prime

Table: Chosen parameters for SQIsign2D and SQIsignHD. Public key and
signature sizes in bytes.

NIST I NIST III NIST V
Prime 5 · 2248 − 1 65 · 2376 − 1 27 · 2500 − 1

SQIsign2D Pub. key 66 98 130
Signature 148 222 294
Prime 13 · 2126 · 378 − 1 — —

SQIsignHD Pub. key 66 — —
Signature 109 — —
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Timings - rigorous version (in C)

Table: Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz),
using generic finite field arithmetic (Fiat-Crypto), GMP 6.2.1. Turbo-boost
disabled. Timings in 106 cycles.

Level SQIsign SQIsignHD SQIsign2D
I 2,800 190 120

Keygen III 21,300 — 440
V 91,600 — 1,070
I 4,600 115 290

Sign III 39,300 — 1,040
V 165,000 — 2,490
I 93 — 25

Verify III 641 — 98
V 2,080 — 247
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Timings - heuristic version (in C, optimized arithmetic)

Table: Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz),
with finite field arithmetic optimised using intrinsics for the Ice Lake
architecture, GMP 6.2.1. Turbo-boost disabled. Timings in 106 cycles.

Level SQIsign SQIsign SQIsign2D SQIsign2D-H
(NIST) (EC 2023)

I 1,700 400 60 58
Keygen III — — 170 170

V — — 360 350
I 2,400 1880 160 100

Sign III — — 460 280
V — — 940 570
I 39 29 9 9

Verify III — — 29 29
V — — 62 60
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Security analysis
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Fiat-Shamir transform

Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:
Complete: a honest execution is always accepted by the verifier.
Sound: an attacker cannot "guess" a response.
Zero-knowledge: the response does not leak any information on
the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable
signature under chosen message attacks in the random oracle model.
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Zero Knowledge Property

Definition (Uniform Target Oracle)

A uniform target oracle (UTO) is an oracle taking as input a
supersingular elliptic curve E/Fp2 and an integer N = Ω(

√
p), and

outputs a random isogeny φ : E → E ′ such that:
1 The distribution of E ′ is uniform among all the supersingular elliptic

curves.
2 The conditional distribution of φ given E ′ is uniform among

isogenies E → E ′ of degree smaller or equal to N.

Definition (Fixed Degree Isogeny Oracle)

A fixed degree isogeny oracle (FIDIO) is an oracle taking as input a
supersingular elliptic curve E/Fp2 and an integer N, and outputs a
uniformly random isogeny φ : E → E ′ with domain E and degree N.
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Zero Knowledge Property

Theorem
The identification protocol is statistically honest-verifier zero-knowledge
in the UTO and FIDIO model. In other words, there exists a polynomial
time simulator S with access to a UTO and a FIDIO that produces
random transcripts which are statistically indistinguishable from honest
transcripts.

Sketch of proof: Case when q := deg(φrsp) is odd.
Generate an isogeny φchl : Epk → Echl according to the honest
challenge distribution.
Call the UTO on input (Echl, 2e), resulting in the isogeny
φ̂rsp : Echl → Ecom.
Call the FIDIO on input (Ecom, 2e − q), resulting in the isogeny
φaux : Ecom → Eaux.
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Welcoming a new member to the SQIsign family

SQIsign SQIsignHD SQIsign2D
Security ✗ ✗✓ ✓

proof
Scalability ✗ ✓ ✓

Signing time ✗ ✓✓ ✓

Signature size ✓ ✓ ✓

Verification ✓ ✗ ✓✓
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