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Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular O = End(E) maximal order in B

p:E— FE left O-ideal and right O'-ideal I,
o, E— F' lo ~ 1y (ly = oo, @ € Bp,oo)
3 A
poy by - 1,

deg(¢p) nrd(l,) = /10 - 1]
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Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Old method:

o Let £y and E; of known endomorphism rings O; = End(E;) and
O, 2 End(E).

e Compute a connecting ideal | between O and O, (left O;-ideal and
right Oz-ideal).

o Compute J ~ [ of smooth norm via [KLPT14].
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The Deuring correspondence

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Old method:

o Let £y and E; of known endomorphism rings O; = End(E;) and
O, 2 End(E).

o Compute a connecting ideal | between O; and O, (left O;-ideal and
right Oz-ideal).

e Compute J ~ | of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢, : E; — E>.

v" Takes polynomial time.

v" Becomes hard when End(E;) or End(E3) is unknown.

X Slow in practice because of the red steps.
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The Deuring correspondence

Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

New method:
o Let £y and E; of known endomorphism rings O; = End(E;) and
0O, 2 End(E).
e Compute a connecting ideal | between O; and O, (left O;-ideal and
right O»-ideal).

o Compute J ~ | of smeeth-normvia{KEPT14}:

@ Translate J into an isogeny ¢, : Ey — E; with higher dimension.

V' Takes polynomial time.
v' Becomes hard when End(E;) or End(E;) is unknown.

v Faster in practice with dimension 2 (or 4) isogenies.
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New tools
SQIsign2D

The SQIsign identification scheme

Dok
=) Epk Prover Verifier
Claim : | know g
public
Prover's secret

published by Verifier
published by Prover
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Overview of SQlsign2D

Recalls on SQIsign

New tools
SQIsign2D

The SQIsign identification scheme

Eo

Pcom Pchl

Prsp

Ecom —_— Echl

— public

Prover's secret
——— published by Verifier
——— published by Prover

A. Basso, P. Dartois et al.

Prover Verifier

Claim : | know g

Commitment: Ecom

Challenge: ¢cp

Response: ¢rsp

SQIsign2D-West

Accept if
(prsp IS correct
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Overview of SQlsign2D Relb an SElH T

New tools
SQIsign2D

New tools

SQIsignHD used dimension 4 isogenies to represent the response and
came short of doing it in dimension 2. We now have the tools to do it.

New tools we use:

e Randlsoglmages in QFESTA [NO23]: Starting from Ey s.t.
J(Eo) = 1728, we can compute an isogeny ¢ : Eg — * of given
non-smooth degree.

o AnyldealTolsogeny: Starting from Ej translate any ideal
I € Oy = End(Ep) into an isogeny ¢ : Eg — * (inspired from
Clapoti/QFESTA [PR23; NO23]).

@ Sampling a random uniform ideal of fixed norm in any maximal

quaternion order.

A. Basso, P. Dartois et al. SQlsign2D-West 14 /39
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Efficient representation

Definition

Let o7 be an algorithm and ¢ : E — E’ be an isogeny defined over IF.
An efficient representation of ¢ (with respect to 7) is data D € {0,1}*
of polynomial size in log(deg(¢)) and log(q) such that, given D and

P € E(F ), o/ computes ¢(P) in polynomial time in klog(qg) and
log(deg ().
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Efficient representation

Definition

Let o7 be an algorithm and ¢ : E — E’ be an isogeny defined over IF.
An efficient representation of ¢ (with respect to 7) is data D € {0,1}*
of polynomial size in log(deg(¢)) and log(q) such that, given D and

P € E(F ), o/ computes ¢(P) in polynomial time in klog(qg) and
log(deg ().

Examples: When deg(y) is smooth:
o ker(y).
@ An isogeny chain of small degrees 1, -, @e such that

And when deg() is not smooth?
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New tools
SQIsign2D

Kani's lemma (dimension 2)

Consider the following commutative diagram:

/

E4LE3

M O W

EE— E

s.t. deg(p) = deg(y’) = g and deg(v)) = deg(v)’) = r are coprime.
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Kani's lemma (dimension 2)

Consider the following commutative diagram:

/

E4LE3

M O W

EE— E

s.t. deg(p) = deg(y’) = g and deg(v)) = deg(v)’) = r are coprime. Then
the isogeny:

~

d);—(f)b, 5>ZE1XE3—>E2XE4

isa (g+ r,q+ r)-isogeny, i.e. Pod = [g + r], and its kernel is:
ker(®) = {([q]P, v 0 p(P)) | P € Ei[q + r]}.
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New tools
SQIsign2D

Kani's lemma (dimension 2)

@ Let ¢ : Ey — E; be an isogeny of odd degree g < 2° to be
computed.
o Let ¢ : E; — E3 be an auxiliary isogeny of degree r := 2¢ — q.
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New tools
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Kani's lemma (dimension 2)

@ Let ¢ : Ey — E; be an isogeny of odd degree g < 2° to be
computed.

o Let ¢ : E; — E3 be an auxiliary isogeny of degree r := 2¢ — q.

@ Suppose we know 1) o p(E1[2¢]).

@ Then we can compute:

ker(®) = {([q]P, v o x(P)) | P € E1[2°]}.
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@ Let ¢ : Ey — E; be an isogeny of odd degree g < 2° to be
computed.
o Let ¢ : E; — E3 be an auxiliary isogeny of degree r := 2¢ — q.
@ Suppose we know 1) o p(E1[2¢]).
@ Then we can compute:
ker(®) = {([q]P, v o p(P)) | P € E1[2°]}.

@ So we can compute

(b::(_f/)’ S%)/>ZE1><E3—)E2><E4
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New tools
SQIsign2D

Kani's lemma (dimension 2)

@ Let ¢ : Ey — E; be an isogeny of odd degree g < 2° to be
computed.
o Let ¢ : E; — E3 be an auxiliary isogeny of degree r := 2¢ — q.
@ Suppose we know 1) o p(E1[2¢]).
@ Then we can compute:
ker(®) = {([q]P, v o p(P)) | P € E1[2°]}.

@ So we can compute

(b::(_f/)’ S%)/>ZE1><E3—)E2><E4

as a chain of e (2,2)-isogenies.
e Knowing ®, we can evaluate ¢ everywhere:

®(P,0) = (#(P), =¢'(P))-
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New tools
SQIsign2D

Kani's lemma (dimension 2)

@ Let ¢ : Ey — E; be an isogeny of odd degree g < 2° to be
computed.
o Let ¢ : E; — E3 be an auxiliary isogeny of degree r := 2¢ — q.
@ Suppose we know 1) o p(E1[2¢]).
@ Then we can compute:
ker(®) = {([q]P, v o p(P)) | P € E1[2°]}.

@ So we can compute

(b::(f/)’ K)/>ZE1XE3—)E2XE4
- 2

as a chain of e (2, 2)-isogenies.
e Knowing ®, we can evaluate ¢ everywhere:

@ So (1 o p(E1[29]), q) is an efficient representation of ¢ (and %').
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Overview of SQlsign2D Relb an SEHT
New tools
SQIsign2D

Key Generation

E Psk Public parameters: p = ¢ - 2¢ — 1 with
0 ¢ small, Eg of j-invariant 1728 and

(:DQ7 Qo) s.t. E0[2e] = <P0, Q0>

Key Generation:

@ Sample a left-ideal fy of
Op = End(Ep) of big fixed norm N.

@ Translate Iy into wg via
AnyldealTolsogeny.

o .
o sk = (/Ska %‘st('DO)ﬂir’)Sk(QO))'

A. Basso, P. Dartois et al. SQlsign2D-West 18 /39
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New tools
SQlsign2D

Commitment

Psk Commitment:

@ Sample a left-ideal /o of
Op = End(Ep) of norm N.

@ Translate leom INtO Yeom Via

Pom AnyldealTolsogeny.
@ com = Eom.
E @ SC = (/com7 SOCOm(PO)7 @com(QO))-

A. Basso, P. Dartois et al. SQlsign2D-West 19 /39
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Recalls on SQIsign
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Commitment

Pcom

Ecom

A. Basso, P. Dartois et al.

Commitment:

@ Sample a left-ideal /o of
Op = End(Ep) of norm N.

@ Translate leom INtO Yeom Via
AnyldealTolsogeny.

@ com = Eom.

@ SC = (/com7 Socom('DO)v @com(QO))'

Differences with SQlsign(HD):

o deg(psk) and deg(pcom) are not
smooth.

@ The distribution of Ecom (and Epk)
is provably uniform.

SQlsign2D-West 19 /39



Overview of SQlsign2D Relb an SEHT

New tools
SQlsign2D

Challenge

Challenge:

@ Sample @chi : Epk — Ecni of
degree 2¢ ~ p.

o In SQIsignHD, deg(pchi) ~ /P was

Pom Pehl sufficient for the challenge space
but we need deg(wcn) >~ p here for
security reasons.

Ecom Echl

A. Basso, P. Dartois et al. SQlsign2D-West 20/ 39
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New tools
SQlsign2D

Response

Psk Response:

e Compute I C End(Epk)
associated to ¢ch (SQIsignHD).

o J+— 7com : /sk ' Ichl-

Pcom Pchl
o Compute lsp ~ J random of norm
<2~ /p.
Prsp E" @ g can be even (suppose it is odd
_— .
Ecom chl for clarity).

e Sample I/, C Oq at random of

aux —
norm 2" — q.

/
¥aux ° Iaux

— [Icom : Irsp] IH

*Taux-
@ Apply AnyldealTolsogeny to

\ leom - fsp * I2uy to compute E,.x and

Ea/ux w;ux © Sorsp o <;Ocom(POa QO)

A. Basso, P. Dartois et al. SQlsign2D-West 21 /39
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Recalls on SQIsign
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Response

SOCOm

Eyyy —— E!/

!
Prsp

Pchl
4
7’
4
4
d
,r\/
Faux
N
N
N
A
aux

A. Basso, P. Dartois et al.

Response:

o Compute the (2", 2")-isogeny:

& Ecom X EL

aux

— Echl X Eaux

of kernel:

<([q]POa Qplaux © Prsp © @com(PO))v
([9] Qo, <P;ux 0 Prsp © Peom(Q0)))-

@ Compute a deterministic basis
(Peni, Qehl) of Ecni[27].

o Evaluate ® to obtain (Paux, Qaux) =
[1/(2" = q)]@aux © Prsp(Pehi, Qehl)-

@ Return (Esux, Paux, Qaux)-

SQlsign2D-West 22 /39



Verification

SOCOm

Overview of SQlsign2D

Pchl

A 4 ‘ y
Prsp \
Ecom > Echl
N .
N ’
N ’
N ’
N v ,
(Paux CD )
., N Y aux
’ N
’ N
’ N
y 7 ’ A
(prsp ’
—_—
Eaux Eaux

A. Basso, P. Dartois et al.

Recalls on SQIsign

New tools
SQlsign2D

Verification:

o Compute a deterministic basis
(Pechi; Qehi) of Eci[27].

o Compute the (27, 2")-isogeny:

® 1 Echi X Eaux — Ecom X

of kernel:

E/

aux

<(Pch|a Paux)a (Qchly Qaux)>-

@ Check its codomain is Ecom X _.

SQIsign2D-West
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Translating ideals of non-smooth norm into
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Translating ideals of non-smooth norm into isogenies

Randlsoglmages [NO23|

Input: An odd number u < 2° and a basis (Py, Qo) of Eq[2°].

Output: The codomain E and the image ¢(Po, Qo) of an isogeny
@ Eg — E of degree u.
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Randlsoglmages [NO23|

Input: An odd number u < 2° and a basis (Py, Qo) of Eq[2°].

Output: The codomain E and the image ¢(Po, Qo) of an isogeny
@ Eg — E of degree u.

e Compute 6 € Oq of norm u(2° — u).
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Translating ideals of non-smooth norm into isogenies

Randlsoglmages [NO23|

Input: An odd number u < 2° and a basis (Py, Qo) of Eq[2°].

Output: The codomain E and the image ¢(Po, Qo) of an isogeny
@ Eg — E of degree u.

e Compute 6 € Oq of norm u(2° — u).

o Consider the commutative diagram:
E——E

¥ 0 ©

/

Eo—— E'

with 8 = 1) o ¢, deg(p) = u and deg(v)) = 2¢ — u.
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Translating ideals of non-smooth norm into isogenies

Randlsoglmages [NO23|

e Compute 6(Py, Qo) to obtain the kernel:

ker(®) = {([u]P,6(P)) | P € Eo[2°]}

¢_<i/ %/):onE()*)EXEI.
- ¥

e Compute the (2¢,2¢)-isogeny ® with the Theta model.
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Translating ideals of non-smooth norm into isogenies

Randlsoglmages [NO23|

e Compute 6(Py, Qo) to obtain the kernel:

ker(®) = {([u]P,6(P)) | P € Eo[2°]}

¢_<i/ %/):onE()*)EXEI.
- ¥

e Compute the (2¢,2¢)-isogeny ® with the Theta model.

e Compute ®(Py,0) = (¢(Po), *) and ®(Qp,0) = ((Qo), *).
@ Return E and o(Po, Qo).

A. Basso, P. Dartois et al. SQlsign2D-West 26 /39



Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

Input: An ideal / C Qg and a basis (Pg, Qo) of Eo[2°].

Output: The codomain E; and the image ¢;(Po, Qo) of ¢, : Eg — Ej.
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Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

Input: An ideal / C Qg and a basis (Pg, Qo) of Eo[2°].

Output: The codomain E; and the image ¢;(Po, Qo) of ¢, : Eg — Ej.

o Find ideals /1, I ~ | of odd norms and u,v € IN odd s.t.
ged(unrd(h), vnrd(h)) =1 and unrd(h) + vnrd(f) = 2°.
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Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

Input: An ideal / C Qg and a basis (Pg, Qo) of Eo[2°].

Output: The codomain E; and the image ¢;(Po, Qo) of ¢, : Eg — Ej.
o Find ideals /1, I ~ | of odd norms and u,v € IN odd s.t.
ged(unrd(h), vnrd(h)) =1 and unrd(h) + vnrd(f) = 2°.
e Use Randlsoglmages of QFESTA to obtain the images of (P, Qo)
via isogenies ¢, : Eg — E, and ¢, : Eg — E, of degrees u and v.
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Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

Input: An ideal / C Qg and a basis (Pg, Qo) of Eo[2°].

Output: The codomain E; and the image ¢;(Po, Qo) of ¢, : Eg — Ej.

o Find ideals /1, I ~ | of odd norms and u,v € IN odd s.t.
ged(unrd(h), vnrd(h)) =1 and unrd(h) + vnrd(f) = 2°.

e Use Randlsoglmages of QFESTA to obtain the images of (P, Qo)
via isogenies ¢, : Eg — E, and ¢, : Eg — E, of degrees u and v.

o Let B1,B2 € Ist. h=1B1/nrd(l) and kh = 1B/ nrd(/).
e Then 0 := @y, o ), = B2/ nrd(1).
e Compute 6(Po, Qo).

A. Basso, P. Dartois et al. SQlsign2D-West 27 /39



Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

@ Now, consider the Kani isogeny diamond:

e F

v
© T T‘p‘/oalz
(ﬁuoiﬂll
E,

4>E/

e And the (2¢,2°)-isogeny:

® = ( Ph©Pu Pk OPy ):EuxEv—>E,><E’
—Pu Pv
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Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

@ Now, consider the Kani isogeny diamond:

e F

v
© T T‘p‘/oalz
(ﬁuoiﬂll
E,

ey =5
e And the (2¢,2°)-isogeny:
® = ( Ph©Pu Pk OPy ):EuxEv—>E,><E’
—Pu Pv
o It has kernel:

ker(®) = {([nrd(h)]eu(P), v 0 0(P)) | P € Eo[2°]}
@ Using the images of 0, ¢, p, of Py, Qo and some DLPs, we obtain
ker(P).
@ We then compute ® in the Theta model.
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Translating ideals of non-smooth norm into isogenies

AnyldealTolsogeny

@ The (2¢,2¢)-isogeny:

® = ( Ph©Pu Pk OPy ):EUXEV—>E,><E’
—Py Pv
represents o, o $, and we know ¢, (Po, Qo).
@ Hence, we can get ¢, (Po, Qo).
@ Besides, [nrd(h)]er = ¢y, o 81 so we can get ¢(Po, Qo).
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Performance

A. Basso, P. Dartois et al. SQIsign2D-West 30/39



Performance

Compactness, scalability, choice of prime

Table: Chosen parameters for SQIlsign2D and SQIsignHD. Public key and
signature sizes in bytes.

NIST | NIST I NIST V
Prime 5.2248 _1 65-2376 — 1 27.2500 _1
SQIsign2D | Pub. key 66 98 130
Signature 148 222 294
Prime 13.2126.378 _ 1 — —
SQIsignHD | Pub. key 66 — —
Signature 109 — —
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Performance

Timings - rigorous version (in C)

Table: Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz),
using generic finite field arithmetic (Fiat-Crypto), GMP 6.2.1. Turbo-boost
disabled. Timings in 10° cycles.

Level SQIsign | SQIsignHD | SQIsign2D

| 2,800 190 120

Keygen " 21,300 — 440
\% 91,600 — 1,070

I 4,600 115 290

Sign " 39,300 — 1,040

\ 165,000 — 2,490

| 93 — 25

Verify | Il 641 — 98
\ 2,080 — 247

A. Basso, P. Dartois et al. SQlsign2D-West 32/39



Performance

Timings - heuristic version (in C, optimized arithmetic)

Table: Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz),
with finite field arithmetic optimised using intrinsics for the lce Lake
architecture, GMP 6.2.1. Turbo-boost disabled. Timings in 10° cycles.

Level | SQIsign SQlsign SQIsign2D | SQIsign2D-H
(NIST) | (EC 2023)

I 1,700 400 60 58
Keygen " — — 170 170

\Y — — 360 350

I 2,400 1880 160 100
Sign " — — 460 280

\Y, — — 940 570

I 39 29 9 9
Verify " — — 29 29

\Y — — 62 60
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Security analysis

Security analysis
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Security analysis

Fiat-Shamir transform

Theorem (Fiat-Shamir, 1986)
Let ID be an identification protocol that is:

o Complete: a honest execution is always accepted by the verifier.
@ Sound: an attacker cannot "guess" a response.

o Zero-knowledge: the response does not leak any information on
the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable
signature under chosen message attacks in the random oracle model.
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Security analysis

Zero Knowledge Property

Definition (Uniform Target Oracle)

A uniform target oracle (UTO) is an oracle taking as input a
supersingular elliptic curve E/IFF 2 and an integer N = Q(,/p), and
outputs a random isogeny ¢ : E — E’ such that:

@ The distribution of E’ is uniform among all the supersingular elliptic
curves.

@ The conditional distribution of ¢ given E’ is uniform among
isogenies E — E’ of degree smaller or equal to M.

\,

Definition (Fixed Degree Isogeny Oracle)

A fixed degree isogeny oracle (FIDIO) is an oracle taking as input a
supersingular elliptic curve E/F 2 and an integer N, and outputs a
uniformly random isogeny ¢ : E — E’ with domain E and degree N.
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Security analysis

Zero Knowledge Property

The identification protocol is statistically honest-verifier zero-knowledge
in the UTO and FIDIO model. In other words, there exists a polynomial
time simulator S with access to a UTO and a FIDIO that produces
random transcripts which are statistically indistinguishable from honest
transcripts.
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Security analysis

Zero Knowledge Property

The identification protocol is statistically honest-verifier zero-knowledge
in the UTO and FIDIO model. In other words, there exists a polynomial
time simulator S with access to a UTO and a FIDIO that produces
random transcripts which are statistically indistinguishable from honest
transcripts.

Sketch of proof: Case when g := deg(irsp) is odd.

o Generate an isogeny el : Epk — Echi according to the honest
challenge distribution.

e Call the UTO on input (Echi,2°¢), resulting in the isogeny
(ﬁrsp  Echi = Ecom.

o Call the FIDIO on input (Ecom,2° — q), resulting in the isogeny
Paux : Ecom = Eaux-
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Conclusion
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Conclusion

Welcoming a new member to the SQlsign family

SQIsign | SQIsignHD | SQIsign2D
Security v v
proof
Scalability v v
Signing time X vV v
Signature size v v v
Verification v vV
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