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Abstract

Shor discovered in 1995 [1] that quantum computers powerful enough could break all cryptographic

primitives based on discrete logarithm and integer factorization such as the widespread RSA and

commonly used elliptic curve cryptography. Ever since, efforts have been made to find quantum-safe

cryptographic primitives. Since the foundational works of Couveignes in the end of the 1990’s [2] and

the discovery of Supersingular Isogeny Diffie-Hellman (SIDH) by De Feo, Jao and Plût in 2011 [3],

isogeny-based cryptography has become a promising area of research in post-quantum cryptography.

Oriented Supersingular Isogeny Diffie-Hellman (OSIDH) is a key exchange protocol due to Kohel and

Colò [4], generalizing the ideas of Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) due

to Castryck et. al. (2018) [5], itself inspired from Couveignes’ cryptosystem. The goal of this master’s

thesis is to study OSIDH. We conduct a cryptanalysis and propose an original attack running on a

classical computer. We implement this attack in SageMath [6] with toy parameters. We come to the

conclusion that OSIDH is not secure if its parameters are not chosen carefully. Unfortunately, a secure

choice of parameters impedes new cryptographic constructions based on the OSIDH framework.
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Introduction

In the incoming years, quantum computers might threaten mainstream cryptographic primitives based

on the hardness of factoring integers and the discrete logarithm problem, creating the need for quantum-

resistant primitives. Lattice based schemes seem to be the most promising and prevail in the US National

Institute of Standards and Technology (NIST) competition meant to standardize post-quantum protocols.

Indeed, among the finalists in the third round, three key encryption mechanisms out of four and two digital

signature schemes out of three are lattice based. Nonetheless, isogeny based cryptography is not to be

overlooked. Indeed, there is an isogeny based third round alternate candidate in the NIST competition:

Supersingular Isogeny Key Encapsulation (SIKE) [7], based on Supersingular Isogeny Diffie-Hellman

(SIDH) protocol [3] of De Feo and Jao. Even though isogeny based protocols are relatively slow, they are

compact compared to their lattice based and code based analogues. However, poor time performance of

isogeny based protocol is not inevitable, since a fast (and compact) isogeny signature scheme (SQISign)

[8] has been proposed recently by De Feo, Kohel, Leroux, Petit and Wesolowski. Another advantage of

isogeny based cryptography is to maintain diversity among post-quantum cryptographic primitives, since

there is no theoretical guarantee preventing the existence of efficient quantum algorithms to solve lattice

problems.

The goal of this thesis is to study Oriented Supersingular Isogeny Diffie Hellman (OSIDH), a new

isogeny based primitive due to Colò and Kohel [4]. OSIDH is a generalization of Commutative Su-

persingular Isogeny Diffie Hellman (CSIDH) [5] due to Castryck, Lange, Martindale, Panny and Renes

based itself on the foundational isogeny based protocol of Couveignes [2], rediscovered by Rostovtsev and

Stolbunov [9].

As the latter, OSIDH relies on a cryptographic group action (also called effective group action), as

defined in [10]. Namely, it means that we have a group G acting faithfully and transitively on a set X

with the following security property: if x ∈ X and g ∈ G, it is computationally hard to recover g with

the knowledge of (x, g · x) only1. In the case of CSIDH and OSIDH, the cryptographic group action is

restricted, meaning that we can only compute the action of a set S of group elements and their inverse.

However, this restriction is not an issue in general when S generates G. One can naturally define a

Diffie-Hellman protocol in a cryptographic group action (G,X, ·), provided that G is abelian. Indeed, if

we fix a public element x0 ∈ X, Alice and Bob will select random elements g and h ∈ G respectively (or

random products of elements of a generating set S and their inverse if the action is restricted). Alice will

compute g · x0 and Bob h · x0. Alice will transmit g · x0 to Bob and Bob will transmit h · x0 to Alice.

Then Alice will act on Bob’s data with g and Bob will act on Alice’s data h, so that they both recover

the shared secret:

g · (h · x0) = h · (g · x0) = (gh) · x0.

The security of such a protocol relies on the hardness to recover g knowing (x, g · x).

In CSIDH, X is the set of supersingular elliptic curves defined over Fp for p ≡ 3 [8] and G is the ideal

class group Cl(O) of the ring O := Z[
√
−p] isomorphic to the ring of Fp-rational endomorphisms for all

1Alternate (but similar) security assumptions can be made. For instance, there is a decisional security hypothesis: given
a secret element g ∈ G, an attacker cannot distinguish tuples (xi, g · xi) with xi ∈ X sampled uniformly at random from
tuples (xi, yi) with yi ∈ X sampled uniformly at random.
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E ∈ X. The group action is given by a ·E := E/E[a] for every O-ideal a and E ∈ X. S is a set of splitting

prime ideals l1, · · · , lt respectively lying above primes `1, · · · , `t such that |E(Fp)| = p+ 1 = 4
∏t
i=1 `i for

all E ∈ X, so that the action of li and li on E are efficiently computable by Vélu’s formulas [11] because

the `i-torsion is Fp-rational. See [5] for details.

In CSIDH, the elliptic curves E in X are all oriented by the quadratic order O = Z[
√
−p] ' EndFp(E),

meaning that we have an embedding O ↪→ End(E), mapping
√
−p to the Frobenius endomorphism.

In OSIDH, we do not restrict to supersingular elliptic curves defined over Fp and consider different

orientations than the ring of Fp-rational endomorphisms but the idea is roughly the same. What really

changes is that the orientation used O is no longer the maximal order of K := O ⊗ Q = Q(
√
−p), the

field of discriminant −4p. In OSIDH, K has a very small discriminant � p and O has a huge prime

power conductor `n. As in CSIDH, we have a restricted class group action by splitting prime ideals of

O, q1, · · · , qt, but the effective computation of the action by these primes is significantly different and

involves `-isogeny chains of length n. However, unfortunately, the security of OSIDH is weaker than that

of CSIDH.

Overview of the thesis

Chapter 1 develops the useful mathematical framework of OSIDH, following the presentation of Colò and

Kohel [4] and its improvements by Onuki [12]. We introduce the notions of oriented supersingular elliptic

curves and isogenies and properly define an ideal class group action based on this notion. Then, we study

oriented `-isogeny graphs and apply our results to the study of `-isogeny chains used as an algorithmic

foundation to compute the cryptographic group action.

Chapter 2 introduces the OSIDH protocol. First, we present a (broken) naive Diffie-Hellman key

exchange. Then, we present the real OSIDH protocol as introduced by Colò and Kohel in [4, § 5.2], which

is an ”implicit” version of the first one.

Chapter 3 introduces different attacks of OSIDH. First, we present two attacks against the naive

Diffie-Hellman protocol due to Colò and Kohel. Then, we present an attack due to Onuki [12, § 6.3]

on the stronger version of the protocol. We present an improvement of this attack based on a lattice

reduction and some countermeasures to this new attack. We provide an implementation of our attack

available on Github [13] running with toy parameters. We also provide test results indicating that this

attack could scale up to realistic parameters like those proposed in [4, p.434] with optimizations and

additional computational resources, since the limiting factor is the runtime of the protocol itself. We

conclude this chapter with Kuperberg’s quantum attack [14].

In the course of my internship, I also attempted to construct a hash proof system, another primitive

based on the cryptographic group action property of OSIDH. Unfortunately, our cryptanalysis of OSIDH

makes this primitive insecure so our construction fails. However, this attempt is presented in Appendix C.
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Chapter 1

Mathematical framework of OSIDH

This chapter presents the essential mathematics to fully understand oriented supersingular elliptic curves.

This notion was first introduced by Colò and Kohel [4] but we follow the approach of Onuki [12] which is

more precise. After introducing the notion of orientation, we study oriented supersingular elliptic curves

obtained by reducing elliptic curves defined over number fields in order to properly define an ideal class

group action on oriented supersingular elliptic curves. Then, we study oriented isogeny graphs to prepare

the study of isogeny chains and ladders, which are the algorithmic foundations of OSIDH.

1.1 Oriented supersingular elliptic curves

Let E/k be an elliptic curve defined over a field k. We denote by End0(E) the tensor product End(E)⊗Q.

Let K be a quadratic imaginary number field.

Definition 1.1. A K-orientation of E is an embedding ι : K ↪→ End0(E). If O is an order of K, we say

that (E, ι) is an O-orientation if ι(O) ⊆ End(E). An O-orientation is primitive if ι(O) = End(E)∩ ι(K).

This definition only makes sense when E is a supersingular elliptic curve, otherwise, we always have

ι(K) = End0(E), so there is (up to complex conjugation), only one such orientation (see [15, Corollary

III.9.4 and Theorem V.3.1]). Hence, in the following, we shall always work with supersingular elliptic

curves defined over k = Fp2 .

Lemma 1.2. Let (E, ι) be a K-oriented elliptic curve. Then :

(i) For all α ∈ ι−1(End(E)), ι(α) = ‘ι(α), Tr(ι(α)) = TrK/Q(α) and deg(ι(α)) = NK/Q(α).

(ii) ι−1(End(E)) is an order of K. In particular, every K-oriented elliptic curve admits a primitive

orientation by an order of K.

Proof. (i) Let α ∈ ι−1(End(E)). If α ∈ Z then α = α and ι(α) = ‘ι(α), so that ι(α) = ‘ι(α),

Tr(ι(α)) = ι−1(ι(α) +‘ι(α)) = 2α = TrK/Q(α) and deg(ι(α)) = ι−1(ι(α)‘ι(α)) = αα = NK/Q(α).

Otherwise, [Q(α) : Z] = 2 so that X2 − Tr(ι(α))X + deg(ι(α)) is the minimal polynomial of α (it

annihilates ι(α), thus it annihilates α) so we can identify the trace and the norm.

(ii) By (i), ι−1(End(E)) ⊆ OK because every α ∈ ι−1(End(E)) is annihilated by the polynomial

X2 − Tr(ι(α))X + deg(ι(α)) ∈ Z[X]. Then either ι−1(End(E)) = Z or ι−1(End(E)) is an order of K.

The first case is impossible, otherwise we would have an embedding K ↪→ Q with [K : Q] = 2.
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Definition 1.3. Let (E, ι) be a K-oriented elliptic curve and ϕ : E −→ F an isogeny. Then, we define

a K-orientation ϕ∗(ι) on F by:

∀α ∈ K, ϕ∗(ι)(α) =
1

deg(ϕ)
ϕι(α)ϕ̂.

Let (E, ιE) and (F, ιF ) be two K-oriented elliptic curves. An isogeny ϕ : E −→ F is K-oriented if

ϕ∗(ιE) = ιF . We denote this by ϕ : (E, ιE) −→ (F, ιF ).

Let ϕ : (E, ιE) −→ (F, ιF ) be a K-oriented isogeny, O := ι−1
E (End(E)) and O′ := ι−1

F (End(F )), so

that ιE is a primitive O-orientation and ιF is a primitive O′-orientation.

Lemma 1.4. There exist non-negative coprime integers m,m′ ∈ N∗ such that Z+mO = Z+m′O′ and

mm′|deg(ϕ).

Proof. Let f and f ′ be respectively the conductors of O and O′. Let e := gcd(f, f ′). Then f := m′e and

f ′ := me with m,m′ ∈ N∗, coprime. Then :

O = Z+ fOK = Z+ em′OK and O′ = Z+ f ′OK = Z+ emOK

and we trivially have Z+mO = Z+mm′eOK = Z+m′O′.
Since ϕ is K-oriented, we have deg(ϕ)ιF = ϕιEϕ̂, so that deg(ϕ)ιF (O) ⊆ End(E) ∩ ιF (K) = ιF (O′)

and deg(ϕ)O ⊆ O′. Multiplying the equation deg(ϕ)ιF = ϕιEϕ̂ by ϕ̂ on the left and ϕ on the right, we

get that deg(ϕ)ιE = ϕ̂ιFϕ and we conclude that deg(ϕ)O′ ⊆ O.

It follows that :

Z+m deg(ϕ)O′ ⊆ Z+mO = Z+m′O′.

Taking a generator ω of O (O = Z[ω]), we get that m deg(ϕ)ω = a+bm′ω for certain integers a, b ∈ Z. It

follows that a = 0 and m deg(ϕ) = bm′ so that m′|deg(ϕ) because m and m′ are coprime. By symmetry,

m|deg(ϕ), so mm′|deg(ϕ).

Proposition 1.5. We assume that ` := deg(ϕ) is a prime number. Then one of the following statements

holds:

(i) O = O′, in which case, we say that ϕ is horizontal.

(ii) O ) O′ and [O : O′] = `, in which case, we say that ϕ is descending.

(iii) O ( O′ and [O′ : O] = `, in which case, we say that ϕ is ascending.

Proof. It follows immediately by the previous lemma. We have Z + mO = Z + m′O′ with m and m′

coprime non-negative integers and mm′|`. Then, either m = m′ = 1, in which case O = O′ or m = `

and m′ = 1 in which case O ) O′ = Z + `O and [O : O′] = ` or m = 1 and m′ = ` in which case

O = Z+ `O′ ( O′ and [O′ : O] = `.

This is a first result indicating that K-oriented supersingular elliptic curves are similar to ordinary

elliptic curves. We shall see deeper similarities (and differences) when we study K-oriented isogeny-graphs

and the ideal class group action.

Example 1.6. We introduce an example of horizontal K-isogeny that will be reused later. Let E/Fp2 be

a supersingular elliptic curve, φp the p-th power Frobenius defined on E and E(p) its image. Suppose that

E admits a primitiveO-orientation ι. We denote by ι(p) theK-orientation of E(p) given by ι(p) := (φp)∗(ι).

Then (E(p), ι(p)) is a primitive O-orientation. In other words, φp is horizontal.

Indeed, if α ∈ O, then there exists ψ ∈ End(E(p)) such that φp ◦ ι(α) = ψ ◦ φp. ψ is obtained by

raising the coefficients of the rational fractions defining ι(α) to the power p. It follows that:

ι(p)(α) =
1

p
φpι(α)φ̂p =

1

p
ψφpφ̂p =

1

p
ψ ◦ [p] = ψ,
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so that ι(p)(α) ∈ End(E(p)). It follows that O ⊆
(
ι(p)
)−1 (

End
(
E(p)

))
. Since:

ι(α) =
1

p
φ̂pι

(p)(α)φp,

we obtain the converse inclusion by similar arguments. Whence φp is horizontal.

Definition 1.7. A K-oriented isogeny ϕ : (E, ιE) −→ (F, ιF ) is an isomorphism if ϕ is an isomorphism

E −→ F and its inverse defines a K-oriented isogeny (F, ιF ) −→ (E, ιE).

1.2 Reduction and oriented supersingular elliptic curves

1.2.1 Motivation

Let SS(p) be the set of supersingular elliptic curves defined over Fp2 up to isomorphism (i.e. the set of

supersingular j-invariants). Let SSO(p) and SSprO (p) be respectively the sets O-oriented supersingular

elliptic curves (respectively primitive) up to K-oriented isomorphism. As in the ordinary case, we have

a group action :

Cl(O)× SSprO (p) −→ SSprO (p)

We shall prove later that this action is well-defined (see Theorem 1.18 in particular). Although, contrary

to the ordinary case, this action is not faithfully transitive the following example outlines.

Example 1.8. Let E be the elliptic curve defined over Fp by the Weierstrass equation y2 = x3 + x with

p ≡ 3 [4] (so that E is supersingular). Let a ∈ Fp2 such that a2 = −1 and the isomorphism:

φ : (x, y) ∈ E 7−→ (−x, ay) ∈ E.

Since φ2 = [−1], we have two primitive Z[i]-orientations:

ι : Q(i) −→ End0(E)

i 7−→ φ
and

ι′ : Q(i) −→ End0(E)

i 7−→ −φ
.

These orientations are not isomorphic. Indeed, otherwise we would have an automorphism ϕ ∈ Aut(E)

such that ϕ∗(ι) = ι′. However:

Aut(E) = {[1], [−1], φ,−φ}

and we trivially have [±1]∗(ι) = ι and:

∀α ∈ Q(i), φ∗(ι)(α) = φι(α)φ̂ = φι(α)(−φ) = −ι(i)ι(α)ι(i) = ι(−i2α) = ι(α),

so that [φ]∗(ι) = ι. By the same computations, [−φ]∗(ι) = ι. Then (E, ι) 6' (E, ι′) so there are at least

two isomorphism classes of primitive Z[i]-orientations.

However, the ideal class group Cl(Z[i]) is trivial so the orbits contain only one element. Hence, the

group action of Cl(Z[i]) on SSpr
Z[i](p) cannot be transitive.

We shall prove, nonetheless, that this result holds when we restrict to the good reductions of elliptic

curves with complex multiplication by O over the complex numbers.

1.2.2 Reduction of elliptic curves with complex multiplication by O

This paragraph is a bit technical and uses the mathematical prerequisites of Appendix A.2 on the reduc-

tion of elliptic curves defined over a number field.

We fix L a number field containing K and an elliptic curve E/L such that End(E) ' O. This is

always possible if we take for E the elliptic curve defined over the complex numbers associated to the
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complex torus C/O. Since E has complex multiplication by O, we know that j(E) is integral over Z

by [16, Theorem II.6.1] so E is defined over the number field L generated by K and j(E). We fix a

normalized ring isomorphism [.]E : O −→ End(E), meaning that [α]∗Eω = αω for all α ∈ O, where ω is

the invariant differential of E (see [16, Proposition II.1.1]).

Let p be a prime number (≥ 5) and p be a place above p. We suppose that E has good reduction

modulo p. Then, we can define a K-orientation [.]E : K −→ End0(E) as follows:

∀α ∈ O, [α]E := [α]E mod p.

Lemma 1.9. Let E and F be two elliptic curves defined over L with complex multiplication by O and

good reduction modulo p. If E and F are isomorphic, then the orientations (E, [.]E) and (F , [.]F ) are

K-isomorphic.

Proof. Let λ : E −→ F be an isomorphism. Since [.]E and [.]F are normalized, we have [α]F = λ◦[α]E◦λ−1

for all α ∈ O by [16, Corollary II.1.1.1]). Reducing this equality modulo p, we get by functoriality of the

reduction that [.]F = λ∗([.]E) where λ : E −→ F is the reduction of λ modulo p. This completes the

proof.

To understand better the reduction, we need two classical results due to Deuring:

Theorem 1.10 (Deuring, 1941). Let L be a number field and E an elliptic curve over L such that

End(E) ' O. Let p be a place above p. Suppose that E has good reduction modulo p. Then E is

supersingular if and only if p does not split in K.

Moreover, if c := prc0 is the conductor of O, with r, c0 ∈ N such that p 6 |c0, then we have:

[.]−1

E
(End(E)) = Z+ c0OK .

Proof. See [17, chapter 13, Theorem 12]. The result given here is slightly more general than the one

proved in [17] because the computation of [.]−1

E
(End(E)) is only done in the ordinary case. However, the

same ideas stand (one just needs to work with [K]E instead of End0(E)).

Theorem 1.11 (Deuring lifting theorem, 1941). Let F be an elliptic curve defined over a finite field k

of characteristic p and ψ ∈ End(F ). Then there exists a number field L, a place p of OL lying above

p, an elliptic curve E/L and an endomorphism ϕ ∈ End(E) such that the reduction of E modulo p is

isomorphic to F and ϕ modulo p is ψ.

Proof. See [17, chapter 13, Theorem 14].

Proposition 1.12. SSprO (p) is not empty if and only if p does not split in K and does not divide the

conductor of O.

Proof. ⇐= We suppose that p does not split in K and that p does not divide the conductor of O. Let

L be a number field containing K and an elliptic curve E/L such that End(E) ' O. Then j(E) is an

algebraic integer by [16, Theorem II.6.1] so E has potential good reduction by Proposition A.3. Replacing

L by a finite field extension if necessary, we may then assume that E has good reduction modulo p. Since

p does not split in K and does not divide the conductor of O, we get that the reduction of E mod p, E

is supersingular and that [.]−1

E
(End(E)) = O, by the Theorem 1.10. It follows that (E, [.]E) ∈ SSprO (p).

=⇒ Suppose that SSprO (p) 6= ∅ and let (F, ι) ∈ SSprO (p). Let α ∈ O be a generator of O: O = Z[α].

Then by Theorem 1.11, there exist a number field L containing K (we may take an extension of L if

necessary), a place p of OL lying above p, an elliptic curve E/L and an endomorphism ϕ ∈ End(E)

such that E has good reduction modulo p, the reduction modulo p, denoted by E is isomorphic to

F and ϕ mod p = ι(α). Since α generates O, it is not an integer and neither is ϕ (because ϕ is

a root of the minimal polynomial of α since the reduction mod p is a ring homomorphism and ι is
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injective), so we have End0(E) = Q(ϕ) and the reduction map End(E) −→ End(F ) has its image in Q(ϕ

mod p) = Q(ι(α)) = ι(Q(α)) = ι(K). Since (F, ι) is a primitive O-orientation and the reduction map is

injective, we have an injective ring homomorphism:

End(E)
mod p−→ End(F ) ∩ ι(K)

ι−1

−→ O

and an injective ring homomorphism O −→ End(E) mapping α to ϕ. Whence End(E) ' O so by

Theorem 1.10, p does not divide the conductor of O. Moreover, p does not split in K because F = E is

supersingular.

In the following, we assume that p does not split in K and does not contain the conductor of O, so

that SSprO (p) is not empty. Let Ell(O) be the set of isomorphism classes of elliptic curves defined over

C with complex multiplication by O (i.e. with endomorphism ring isomorphic to O). As we saw, every

class [E] ∈ Ell(O) admits a representative E defined over a number field LE containing K and any place

p lying above p has potential good reduction modulo p, so there is a finite field extension L′/LE and a

place P lying above p such that E has good reduction modulo P. Let L′E be the field generated by the

union of these extensions when p varies. It is still a number field because there are finitely many places

in OL lying above p (OL is Dedekind). Moreover, Ell(O) is finite (by [16, Proposition II.2.1.(b)]). Then,

the field L generated by all the fields L′E is a number field (containing K) and every elliptic curve E with

complex multiplication by O is defined over L (up to isomorphism) and has good reduction modulo any

place p of L lying above p. We shall fix L and p in the following. Then, we have a map given by the

reduction modulo p:

ρ : Ell(O) 7−→ SSprO (p)

E 7−→ (E, [.]E)
.

This map is actually not surjective (that is why the action described in Example 1.8 fails to be transitive),

however we have a comforting result.

Proposition 1.13. For all (F, ι) ∈ SSprO (p), we either have (F, ι) ∈ ρ(Ell(O)) or (F (p), ι(p)) ∈ ρ(Ell(O)).

Proof. Let (F, ι) ∈ SSprO (p). Then, as in the proof of the direct implication of Proposition 1.12, there

exist a number field L′ containing K, a place p′ of OL′ lying above p, an elliptic curve E/L′ such that

E has good reduction modulo p′, the reduction modulo p′, E is isomorphic to F and End(F ) ' O. We

also have obtained in the proof of Proposition 1.12, that (E, [.]E) is a primitive O-orientation satisfying

[K]E = ι(K). Then the composition:

K
[.]
E−→ [K]E = ι(K)

ι−1

−→ K

is a field automorphism so it is either the identity or the complex conjugation, so we either have [α]E = ι(α)

or [α]E = ι(α) for all α ∈ K. In the first case, (E, [.]E) is K-isomorphic to (F, ι).

Now we assume that [α]E = ι(α) for all α ∈ K. Replacing L′ by the field extension generated by

the conjugates of a generator of L′ if necessary, we may assume that L′/Q is Galois. Let Gp′ be the

decomposition group of p′:

Gp′ := {σ ∈ Gal(L′,Q) | σ(p′) = p′}.

There exists σ ∈ Gp′ whose restriction to K is not trivial. Indeed, otherwise by [18, Corollary I.3], K

would be contained in the subfield L′′ fixed by p′, which is the maximal field subextension of L′ in which p

splits completely. But p does not split in K so there is only one prime ideal q lying above p and all prime

ideals of L′′ lying above p would be lying above q so there would be at most [L′′ : K] < [L′′ : Q] such

prime ideals by [18, chapter I, Proposition 11] and p would not split completely in L′′. Contradiction.

Then, we may take σ ∈ Gp′ such that σ|K is the complex conjugation. As in [16, § II.2], we define a
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map:

End(E) −→ End(Eσ)

φ 7−→ φσ
,

where Eσ is obtained from E by letting σ act on the coefficients of its Weierstrass equation and φσ is

given by the action of σ on the coefficients of the rational fractions defining φ. We have by [16, Theorem

II.2.2.(a)], ([α]E)σ = [σ(α)]Eσ = [α]Eσ for all α ∈ K. Hence:

∀α ∈ K, [α]Eσ mod p′ ≡ ([α]E)σ mod p′ ≡ ([α]E mod p′)
σ

= ([α]E)σ = (ι(α))σ,

where σ ∈ Gal(OL′/p′,Fp) is obtained by reduction of σ modulo p′. Furthermore, Eσ = Fσ. By the

following lemma, we can assume that σ is either the identity or the p-th power Frobenius. It follows that

[.]Eσ = ι or ι(p) i.e. that the reduction (Eσ, [.]Eσ ) is either K-isomorphic to (F, ι) or (F (p), ι(p)).

Lemma 1.14. Let H be the subgroup of Gp′ formed by elements fixing K. Then, the coset σH is formed

of elements of Gp′ whose restriction on K is the complex conjugation. The reduction σH of σH mod p′

contains either the identity or the p-th power Frobenius.

Proof. By [18, propostion I.14], the reduction map Gp′ −→ G := Gal(OL′/p′,Fp) is a surjective group

homorphism. Since Gp′ := H t σH, we also have G = H ∪ σH. If σ ∈ H, then G = H = σH and both

the identity or the p-th power Frobenius are in σH.

Let us assume that σ 6∈ H. Then G = H tσH and H is a subgroup of index 2 in G. Since G is cyclic

and generated by the p-th power Frobenius σp, H is generated by σ2
p, so that:

H = {σkp | k even} and σH = {σkp | k odd}.

Then σH contains σp, which completes the proof of the lemma.

In both cases ([α]E = ι(α) or [α]E = ι(α) for all α ∈ K), we have obtained an elliptic curve E over L′

with good reduction mod p′ such that End(E) ' O and (E, [.]E) is K-isomorphic to (F, ι) or (F (p), ι(p)).

If L′ ⊆ L and p′ ⊆ p, the proof is complete. We now prove that we can reduce to this case. Let M be

the field generated by L′ and the K-conjugates of a generator of L. Then M/K is a Galois extension of

L/K and L′/K. Let P and P′ be prime ideals of OM lying above p and p′ respectively. Since p does not

split in K, there is a unique prime ideal q of OK lying above p, so that p, p′,P and P′ lie above q. By

transitivity of the Galois group action on prime ideals [18, Proposition I.11], there exists σ ∈ Gal(M,K)

such that σ(P′) = P. Then, by [16, Theorem II.2.2.(a)], we have ([α]E)σ = [σ(α)]Eσ = [α]Eσ . It follows

that:

∀α ∈ K, [α]Eσ mod P ≡ ([α]E)σ mod σ(P′) ≡ ([α]E mod P′)
σ

= ([α]E)σ,

where σ : OM/P′ −→ OM/P is the finite field isomorphism induced by σ. Since the fields are finite, this

isomorphism could be seen as a finite field automorphism fixing OK/q, i.e. as a power of the Frobenius

pN(q)-th power. Moreover, we have for all τ ∈ GP, τσ(P′) = τ(P) = P and the reduction map

GP −→ Gal(OM/P,OK/q) is surjective so we may assume that σ is the identity. Hence, we get that the

reduction of (Eσ, [.]Eσ ) modulo P is (E, [.]E). Since End(Eσ) ' End(E) ' O by [16, Proposition II.2.1],

we have [Eσ] ∈ Ell(O) so there exists an elliptic curve E′ defined over L with good reduction modulo p

isomorphic to Eσ. As P lies above p, this completes the proof.

1.3 The ideal class group action

We shall now define a group action of Cl(O) on ρ(Ell(O)), as announced previously, and prove that it

is faithful and transitive. Let a be a non-zero ideal of O. According to [19, Corollary 7.17], we can
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assume that N(a) is prime to p without changing the class [a] ∈ Cl(O). We shall always work under this

assumption in the following. We define the a-torison of E by:

E[a] =
⋂
α∈a

ker(ι(α)).

E[a] is finite, so [15, Proposition III.4.12] ensures that there exists an elliptic curve E′ and a separable

isogeny ϕ : E −→ E′ such that ker(ϕ) = E[a]. (E′, ϕ) is unique up to isomorphism. Indeed, if ϕ′ : E −→
E′′ has the kernel, then there exists an isomorphism λ : E′ −→ E′′ such that ϕ′ = λ ◦ ϕ. Then, we

have ϕ′∗(ι) = λ∗(ϕ∗(ι)) and λ being an endomorphism, (E′, ϕ∗(ι)) is K-isomorphic to (E′′, ϕ′∗(ι)). Then,

(E′, ϕ∗(ι)) is uniquely determined by a up to K-isomorphism. In the following, for a given ideal a of O
we shall refer to E′, ϕ and (E′, ϕ∗(ι)) as E/E[a], ϕa and a · (E, ι) respectively.

Proposition 1.15. Let (E, ι) be a primitively O-oriented elliptic curve and a an ideal of O of norm

prime to p.

(i) Let (E′, ι′) := a · (E, ι), O′ := ι′−1(End(E′)) and b an ideal of O′ of norm prime to p. We suppose

that O′ ⊆ O. Then ker(ϕb ◦ ϕa) = E[ba].

(ii) deg(ϕa) = N(a).

(iii) ϕa is either horizontal or ascending (O ⊆ O′).

(iv) If a is invertible, then ϕa is horizontal. In addition, we have ker(ϕ̂a) = E′[a].

Proof. (i) This is a difficult result, beyond the scope of this thesis, that becomes natural with the

framework of abelian varieties. The classical reference for this fact is Waterhouse’s thesis [20, Proposition

3.12] but the proof of Milne given in his lecture notes on complex multiplication [21, Proposition 7.28]

may be easier to follow.

(ii) See [20, Theorem 3.15] or [21, Proposition 7.29].

(iii) We may assume that E[a] is cyclic. Indeed, we suppose that this is not the case. The theorem

of finite abelian group structure and the Chinese remainder theorem ensure that E[a] is isomorphic to

a product of its Sylow subgroups. Since E[a] is not cyclic, it contains a non cyclic q-Sylow subgroup

(otherwise, it would be cyclic by the Chinese remainder theorem). Hence, the q-torsion subgroup of E[a]

is of the form (Z/qZ)b with b ≥ 2, so that E[q] ' (Z/qZ)2 ⊆ E[a] ⊆ ker(ι(α)) for all α ∈ a. Since

E[q] ' (Z/qZ)2 here, [q] = ι(q) is separable and for all α ∈ a, we have a factorization ι(α) = λα ◦ ι(q)
with λα = ι(α/q) ∈ End(E) by [15, Corollary III.4.11]. Hence, a is divisible by q, and furthermore,

E[q] ⊆ ker(ϕa) so ϕa factors through [q] = ι(q) which is horizontal, so we may replace it by a/q.

Applying this process iteratively makes E[a] cyclic.

Let n := deg(ϕa) = N(a). Then E[a] ⊆ E[n]. Since ϕa is separable by construction, |E[a]| = n so

that E[a] ' Z/nZ and p does not divide n so that E[n] ' (Z/nZ)2. Hence there exists a Z/nZ-basis

(P,Q) of E[n] such that P generates E[a], according to the following lemma.

Lemma 1.16. Let (G,+) be an abelian group isomorphic to (Z/nZ)2 and g ∈ G of order n. Then, there

exists h ∈ G such that (g, h) generate G.

Proof. Let (g′, h′) be a Z/nZ-basis of G (it does exist because G is a free Z/nZ-module of rank 2).

Then there exists k, l ∈ N such that kg′ + lh′ = g. Since g is of order n, gcd(n, k, l) = 1 so there

exists u, v, w ∈ Z such that un + vk + wl = 1. Let h := −wg′ + vh′. We prove that (g, h) generates G

i.e. that (λ, µ) ∈ (Z/nZ)2 7−→ λg + µh ∈ G is surjective. By cardinality, it suffices to show that this

group homomorphism is injective. Let (λ, µ) ∈ (Z/nZ)2 such that λg + µh = 0. Then (λk − wµ)g′ +

(λl + µw)h′ = 0 so that λk − wµ ≡ 0 [n] and λl + µw ≡ 0 [n] because (g′, h′) be a Z/nZ-basis. Then

0 ≡ v(λk − wµ) + w(λl + µw) ≡ λ [n] and 0 ≡ l(λk − wµ) − k(λl + µw) ≡ µ [n], which completes the

proof.
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Let P ′ ∈ E such that P = nP ′ (it does exist because [n] is surjective as any non-zero isogeny). Then,

[n] ◦ ϕa(P ′) = ϕa([n]P ′) = ϕa(P ) = O and [n] ◦ ϕa(Q) = ϕa([n]Q) = O so that ϕa(P ′), ϕa(Q) ∈ E′[n].

Furthermore, by [15, Proposition III.8.2], we have:

en(ϕa(P ′), ϕa(Q)) = en(ϕ̂aϕa(P ′), Q) = en([n]P ′, Q) = en(P,Q).

Where en is the Weil pairing, as defined in [15, III.8]. So (ϕa(P ′), ϕa(Q)) generates E′[n] by the following

lemma.

Lemma 1.17. Let (R,S) ∈ E[n]2. Then, (R,S) generates E[n] if and only if en(R,S) is a primitive

n-th root of unity.

Proof. =⇒ Suppose that (R,S) generates E[n]. Let d ∈ Z such that en(R,S)d = 1. Then for all a, b ∈ Z,

we have:

en([a]R+ [b]S, [d]S) = en(R,S)ad = 1,

so that en(T, [d]S) = 1 for all T ∈ E[n]. Since en is non-degenerate, [d]S = O and n|d.

⇐= Suppose that en(R,S) is a primitive n-th root of unity. Let a, b ∈ Z such that [a]R + [b]S = O.

Then:

1 = en([a]R+ [b]S, S) = en(R,S)a and 1 = en(R, [a]R+ [b]S) = en(R,S)b,

so that n|a and n|b. Hence (R,S) generates E[n].

We have for all α ∈ a and β ∈ O:

ι(α) ◦ ι(β) ◦ ϕ̂a ◦ ϕa(P ′) = ι(αβ)([n]P ′) = ι(β) ◦ ι(α)(P ) = O,

so that ι(β) ◦ ϕ̂a ◦ ϕa(P ′) ∈
⋂
α∈a ker(ι(α)) = E[a] and we have for all β ∈ O:

ϕa ◦ ι(β) ◦ ϕ̂a ◦ ϕa(P ′) = O.

We also trivially have for all β ∈ O:

ϕa ◦ ι(β) ◦ ϕ̂a ◦ ϕa(Q) = ϕa ◦ ι(β)([n]Q) = ϕa ◦ ι(β)(O) = O.

Then E′[n] ⊆ ker(ϕa ◦ ι(β) ◦ ϕ̂a) since (ϕa(P ′), ϕa(Q)) generates E′[n]. By [15, Corollary III.4.11],

it follows that n divides ϕa ◦ ι(β) ◦ ϕ̂a, so that ι′(β) = ϕa∗(ι)(β) ∈ End(E′) for all β ∈ O. Hence

O ⊆ ι′−1(End(E′)) = O′ and ϕa is horizontal or ascending.

(iv) First, we prove that ker(ϕ̂a) = E′[aO′]. Since a is invertible [19, Lemma 7.14.(iii)] ensures that

aa = N(a)O = nO i.e. that a = na−1.

We keep the notations of (iii) and the point Q in particular. Since Q ∈ E[n], we have ϕa(Q) ∈ ker(ϕ̂a).

But (ϕa(P ′), ϕa(Q)) generate E[n] so ϕa(Q) is of order n = deg(ϕ̂a) so ϕa(Q) generates ker(ϕ̂a). For all

α ∈ a and β ∈ a−1, we have:

ι(α) ◦ ι(nβ)(Q) = ι(αβ)([n]Q) = O.

Hence ι(nβ)(Q) ∈
⋂
α∈a ker(ι(α)) = E[a] so that for all β ∈ a−1:

O = ϕa(ι(nβ)(Q)) = ι′(nβ)ϕa(Q)

and ϕa(Q) ∈ E′[na−1O′] = E′[aO′]. It follows that ker(ϕ̂a) ⊆ E′[aO′].
Conversely, let R ∈ E′[aO′]. Since ϕa is not constant, it is surjective and there exists S ∈ E such

that R = ϕa(S). For all β ∈ a−1, we have:

ϕa(ι(nβ)(S)) = ι′(nβ)(ϕa(S)) = ι′(nβ)(R) = O,
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so that ι(α)◦ι(nβ)(S) = O for all α ∈ a. Since aa−1 = O, there exists α1, · · · , αr ∈ a and β1, · · · , βr ∈ a−1

such that
∑r
i=1 αiβi = 1 and we have:

[n]S = ι

(
r∑
i=1

αinβi

)
(S) =

r∑
i=1

ι(αi)ι(nβi)(S) = O.

Hence O = [n]S = ϕ̂a(ϕa(S)) = ϕ̂a(R) and R ∈ ker(ϕ̂a).

We conclude that ker(ϕ̂a) = E′[aO′], so that ϕ̂a is the isogeny ϕaO′ associated to the ideal aO′.
Applying (iii) in the other direction, we get that O′ ⊆ O i.e. that ϕa is horizontal.

The previous proposition was our first step towards the proof of the desired theorem:

Theorem 1.18. Cl(O) acts faithfully and transitively on ρ(Ell(O)) via: (a, (E, ι)) 7−→ a · (E, ι).

Proof. First of all, we prove that the map (a, (E, ι)) 7−→ a · (E, ι) defines a group action of Cl(O) on

ρ(Ell(O)).

Let (F, ι) ∈ ρ(Ell(O)) and let E ∈ Ell(O) such that ρ(E) = (F, ι) i.e. such that (E, [.]E) ' (F, ι). Let

a be an invertible ideal of O of norm prime to p. It is a general fact that the kernel of the reduction

modulo p of an isogeny is the reduction modulo p of its kernel. It follows that the reduction modulo p of

E[a] :=
⋂
α∈a ker([α]E) is:

E[a] =
⋂
α∈a

ker([α]E) =
⋂
α∈a

ker([α]E) =
⋂
α∈a

ker([α]E) = E[a] = F [a].

By [15, Proposition III.4.12], there exists an isogeny φ : E −→ E′ such that ker(φ) = E[a]. By the

theory of complex multiplication over the complex numbers, we have E′ ∈ Ell(O) (see [16, Proposition

II.2.1.(a).(ii)] which is still valid for any order O and not only for OK). Then, we can assume that

E′ is defined over L and has good reduction modulo p. The reduction of φ modulo p, denoted by

φ : E −→ E′, has kernel E[a] = F [a] so E′ is isomorphic to F/F [a] and φ = ϕa. Furthermore, we have

for all α ∈ K, φ[α]E = [α]E′φ by [16, Corollary II.1.1.1]. The reduction modulo p of this formula ensures

that ϕa∗(ι) = φ∗([.]E) = [.]E′ . Whence:

a · (F, ι) = (F/F [a], ϕa∗(ι)) = (E′, [.]E′) = ρ(E′).

We have proved that we have a well defined map (a, (E, ι)) ∈ Ip(O)×ρ(Ell(O)) 7−→ a · (E, ι) ∈ ρ(Ell(O)),

where Ip(O) is the set of invertible ideals of O of norm prime to p. Since any class of Cl(O) admits a

representative in Ip(O), it remains to prove that principal ideals fix ρ(Ell(O)).

Let α ∈ O and (E, ι) ∈ ρ(Ell(O)). Then E[αO] = ker(ι(α)), so E/E[αO] ' E because ι(α) ∈ End(E).

Furthermore:

∀β ∈ K, ι(α)∗(ι)(β) =
1

deg(ι(α))
ι(α)ι(β)‘ι(α) =

1

NK/Q(α)
ι(α)ι(β)ι(α) =

1

NK/Q(α)
ι(ααβ) = ι(β),

so that αO · (E, ι) ' (E, ι). Hence the map reduces to Cl(O).

Let a, b be invertible ideals ofO of norm prime to p and (E, ι) ∈ ρ(Ell(O)). Then we have ker(ϕb◦ϕa) =

E[ba] by point (i) of Proposition 1.15, so that ϕb ◦ ϕa = ϕba and ϕb∗(ϕa∗(ι)) = (ϕb ◦ ϕa)∗(ι). It follows

that:

b · (a · (E, ι)) = (ba) · (E, ι).

Hence, (a, (E, ι)) ∈ Cl(O)× ρ(Ell(O)) 7−→ a · (E, ι) ∈ ρ(Ell(O)) is a group action.

We now prove that it is faithful. Let a be an invertible ideal of O of norm prime to p and (E, ι) ∈
ρ(Ell(O)) such that a · (E, ι) = (E, ι). Then ϕa ∈ End(E) and ϕa∗(ι) = ι. It follows that:

∀α ∈ K, ϕa ◦ ι(α) = ι(α) ◦ ϕa (?).
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We claim that ϕa ∈ ι(K)∩End(E) = ι(O). Let us suppose the contrary by contradiction. Let K ′ be the

field generated by ι(K) and ϕa. Then K ( K ′ and [K ′ : Q] = [K ′ : K][K : Q] ≥ 4 so K ′ = End0(E) since

End0(E) has dimension at most 4 by [15, Corollary III.7.5]. Then, K ′ is a quaternion algebra by [15,

Theorem V.3.1] so is non-commutative, contradicting (?). Hence, there exists α ∈ O such that ϕa = ι(α).

It follows that ker(ι(α)) = E[a] =
⋂
β∈a ker(ι(β)) and consequently, that all ι(β) for β ∈ a factor through

ι(α) i.e. that β/α ∈ O. Hence a ⊆ αO. Furthermore, point (ii) of Proposition 1.15 and [19, Lemma

7.14.(i)] ensure that:

N(a) = deg(ϕa) = deg(ι(α)) = N(α) = N(αO),

so that a = αO, which achieves the proof of the faithfulness.

Finally, we obtain the transitiveness by a cardinality argument: by faithfulness, every orbit has

cardinality |Cl(O)| but we know by [16, Proposition II.1.2.(b)] that |Cl(O)| = |Ell(O)| ≥ |ρ(Ell(O))|.

Remark 1.19. By the last cardinality argument, we also obtain that the reduction map ρ is injective.

1.4 Oriented supersingular isogeny graphs

1.4.1 Volcano structure of oriented supersingular isogeny graphs

We fix a quadratic imaginary number field K, and a prime number such that p does not split in K. We

want to study isogeny graphs of K-oriented supersingular elliptic curves.

Let Ell(K) be the union of Ell(O) for every order O of K with conductor prime to p and SSK(p)

be the set of K-oriented supersingular elliptic curves up to K-oriented isomorphism. Then, we have an

injective map:

ρ : Ell(K) −→ SSK(p)

naturally induced by the reduction maps ρO : Ell(O) −→ SSprO (p) for all orders O of K with conductor

prime to p that we defined in Paragraph 1.2.2.

Definition 1.20. We say that two K-oriented isogenies ϕ : (E, ιE) −→ (F, ιF ) and ϕ : (E′, ιE′) −→
(F ′, ιF ′) are K-equivalent if there exists two K-oriented isomorphisms λ : (E, ιE)

∼−→ (E′, ιE′) and

λ′ : (F, ιF )
∼−→ (F ′, ιF ′) such that ϕ′ = λ′ ◦ ϕ ◦ λ−1.

Definition 1.21. Let ` 6= p be a prime number. The K-oriented supersingular `-isogeny graph G`(K, p)

is the graph whose set of vertices is ρ(Ell(K)) and whose edges are K-oriented `-isogenies up to K-

equivalence.

Considering dual isogenies, we see that this graph is undirected. Note that two vertices of this graph

may have the same j-invatiant but not the same K-orientation up to K-isomorphism, that is why they are

distinct in G`(K, p) (see Figures 1.1 and 1.2). Hence, G`(K, p) is very different from the supersingular

`-isogeny graph over Fp2 . In particular, unlike the latter whose cardinality is close to p/12 (by [15,

Theorem V.4.1.(c)]), G`(K, p) is infinite (since K has infinitely many orders of conductor prime to p).

However, we have the following result:

Proposition 1.22. Let G`(K) be the graph whose vertices are elliptic curves with complex multiplication

by an order of K with conductor prime to p, defined over C up to isomorphism and whose edges are

`-isogenies up to composition by isomorphisms. Then ρ induces a graph isomorphism between G`(K) and

G`(K, p) and G`(K, p) is stable by `-isogenies.

Proof. By the definition of G`(K, p) and by the injectivity of ρ, we have a bijection between the set of

vertices. Since the reduction map preserves the degree (along with the trace as a ring homomorphism),

any `-isogeny between two vertices of G`(K) reduces to an `-isogeny between two vertices of G`(K, p).
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Conversely, if (E, ι) is a vertex of G`(K, p) and if ϕ : (E, ι) −→ (E′, ι′) is a K-oriented `-isogeny, one

can lift E, E′ and ϕ by lifting the kernel as we did in the proof of Theorem 1.18. It follows that (E′, ι′)

is in the image of ρ, so that (E′, ι′) ∈ G`(K, p). This completes the proof.

It follows from the previous result that every connected component of G`(K, p) is an isogeny volcano,

as Kohel proved [22, Proposition 23]. We recall the result and its proof here.

Proposition 1.23. Let (E, ι) ∈ G`(K, p) be a supersingular primitively O-oriented elliptic curve and

∆K := disc(K). Then:

(i) If ` - [OK : O], there are 1 +
(

∆K

`

)
horizontal, 1/[O× : (Z + `O)×]

(
`−

(
∆K

`

))
descending and no

ascending `-isogenies with origin (E, ι) up to K-isomorphism.

(ii) If `|[OK : O], then there are no horizontal, ` descending and one ascending `-isogenies up to K-

isomorphism.

Here,
(
.
`

)
denotes the Kronecker symbol, given for ` 6= 2 by:

∀a ∈ Z,
(a
`

)
:=


0 if a ≡ 0 mod `

1 if a mod ` is a square in F∗`
−1 otherwise

and for ` = 2 by:

∀a ∈ Z,
(a
`

)
:=


0 if a ≡ 0 mod 2

1 if a ≡ ±1 mod 8

−1 if a ≡ ±3 mod 8.

Proof. By Proposition 1.22, we can work over C to prove this classical result. The proof follows [23,

Theorem 23.5], as it is more elementary than Kohel’s proof.

First we notice that all `-isogenies with given domain E are determined by their kernel (by [15,

Corollary III.4.11]) which is a cyclic subgroup of order ` in E[`]. Considering the action of (Z/`Z)∗ on

the set of non-zero elements of E[`] ' (Z/`Z)2 by scalar multiplication, whose orbits are exactly the

cyclic subgroups of order ` in E[`] (deprived from the neutral element), we obtain that there are:

`2 − 1

`− 1
= `+ 1

such subgroups. Hence, there are `+ 1 isogenies of degree ` up to isomorphic choices of the codomain.

We first assume that E is the complex torus C/Λ with Λ homothetic to O. To simplify, we set

Λ := `O. Let ϕ : E −→ E′ be an `-isogeny. Let Λ′ be the lattice associated to E′. Then, up to homotety

we can assume that Λ ⊆ Λ′ and that ϕ is induced by this inclusion. Then, Λ = `O has index ` in Λ′, so

that `Λ′ ⊆ Λ = `O i.e. Λ′ ⊆ O and we have:

[O : Λ′] =
[O : Λ′]

[Λ′ : Λ]
=
`2

`
= `.

Let τ ∈ Q be a generator of O. Then O is the lattice [1, τ ] and Λ′ is one of the sublattices of index `,

Λi := [`, τ + i] for i ∈ J0 ; `− 1K or Λ` := [1, `τ ] according to the following lemma.

Lemma 1.24. A sublattice of index ` of [1, τ ] is of the form [`, τ + i] for i ∈ J0 ; `− 1K or [1, `τ ].

Proof. Let us write L := [1, τ ] and let L′ ⊆ L be a sublattice of index `. Then L′ has rank 2 and we have

L′ := [a + bτ, c + dτ ] with a, b, c, d ∈ Z. Let δ := gcd(a, c) and δ′ := gcd(b, d). Since L′ has index `, we

have `, `τ ∈ L′, so δ|` and δ′|`. However, both cannot equal `, otherwise we would have L′ ⊆ `L and `L

has index `2, so either δ or δ′ equals 1.
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Suppose δ′ = `. Then, δ = 1 so there exists u, v ∈ Z such that ua+ vc = 1, so that 1 + (ub+ vd)τ =

u(a+ bτ) + v(c+ dτ) ∈ L′ and `|ub+ vd so 1 ∈ L′ because `τ ∈ L′. Hence, [1, `τ ] ⊆ L′ and this inclusion

is an equality because [1, `τ ] has index ` in L.

Suppose δ′ = 1. Then, there exists u, v ∈ Z such that ub+ vd = 1, and (ua+ vc) + τ = u(a+ bτ) +

v(c + dτ) ∈ L′. Adding or subtracting ` as many times as necessary, we obtain that τ + i ∈ L′ with

i ∈ J0 ; `− 1K, so [`, τ + i] ⊆ L′ and this inclusion is an equality because [`, τ + i] has index ` in L.

Let O′ := End(E). By the theory of complex multiplication, we have:

O′ = {α ∈ C | αΛ′ ⊆ Λ′}.

Hence O′ = O if and only if Λ′ is a proper ideal of O of norm `. If ` - [OK : O], there are 1 +
(

∆K

`

)
such

ideals, corresponding to horizontal isogenies and otherwise there is no such ideal (hence no horizontal

isogeny), by the following lemma.

Lemma 1.25. If ` - [OK : O], there are 1 +
(

∆K

`

)
proper ideals of norm ` in O. Otherwise, all ideals of

norm ` are not proper.

Proof. Let l be an ideal of norm `. Then l is proper by, [19, Lemma 7.18.(ii)] if and only if ` - [OK : O].

Furthermore, ll = `O by [19, Lemma 7.14.(iii)], so that ` ∈ l and lOK lOK = `OK and N(lOK)N(lOK) =

N(`OK) = `2 by [19, Lemma 7.14.(ii)]. Hence N(lOK) = ` because the norm of an ideal is invariant

under complex conjugation. Moreover, lOK ∩ O ⊇ l and we have an equality because the injection

O/lOK ∩ O ↪→ OK/lOK ensures that N(lOK ∩ O)|N(lOK) = `. Hence, the maps l 7−→ lOK and

`′ 7−→ `′ ∩ O are reciprocal bijections between the sets of ideals of norm ` in O and OK .

Hence, we can assume that O = OK . Let α ∈ C such that OK = Z[α] and let Π := X2−tX+n ∈ Z[X]

the minimal polynomial of α. Then, by [18, Proposition I.25] the ideals containing ` are of the form

lQ := `OK +Q(α)OK where Q ∈ Z[X] is such that the reduction of Q modulo ` is a factor of Π in F`[X].

lQ has norm ` if and only if Q is a factor of degree 1.

If ` 6= 2, such a factor exists if and only if ∆K = t2 − 4n is a square in F`. Hence, there are no ideal

of norm ` if
(

∆K

`

)
= −1, one such ideal if

(
∆K

`

)
= 0 i.e. ∆K ≡ 0 [`] and two such ideals if

(
∆K

`

)
= 1.

Suppose now that ` = 2. Then ∆K ≡ 0, 1 [4]. If ∆K ≡ 0 [4], then t is even so Π ≡ X2 [2] or

Π ≡ X2 + 1 = (X + 1)2 [2] and Π has one factor of degree 1, so there is 1 = 1 +
(

∆K

2

)
ideal of norm 2.

If ∆K ≡ 1 [4], then t is odd so t ≡ ±1 [4] and t2 ≡ 1 [8]. Hence, 4n ≡ 1 − ∆K [8], so n is even when

∆K ≡ 1 [8] and Π ≡ X2 +X ≡ X(X + 1) [2] has two factors of degree 1, so there are 2 = 1 +
(

∆K

2

)
ideal

of norm 2. On the contrary, n is odd when ∆K ≡ 5 [8] and Π ≡ X2 +X + 1 [2] has no factor of degree

1, so there is 0 = 1 +
(

∆K

2

)
ideal of norm 2.

If ` - [OK : O], then we cannot have O ⊆ O′ and `|[O′ : O] so there is no ascending isogeny by

Proposition 1.5. Hence, we have `−
(

∆K

`

)
descending isogenies.

Now, we assume that `|[OK : O]. Then, there exists an order O′′ ⊆ OK containing O with index

`. Hence, we have O′′ = Z[α] with `α = τ . Since α is an algebraic integer, we have α2 − tα + n = 0,

with t := TrK/Q(α) ∈ Z and n := NK/Q(α) ∈ Z. Since ϕ cannot be horizontal the Proposition 1.5

ensures that ϕ : E −→ E′ is ascending if and only if O′ = O′′ and that otherwise, ϕ is descending

and O′ ( O ( O′′. We have α` = τ ∈ Λ0 = [`, τ ] and ατ = `α2 = `(tα − n) = tτ − `n ∈ Λ0 so O′′

fixes Λ0, so that O′ ⊃ O′′ so Λ0 corresponds to an ascending isogeny. For all i ∈ J1 ; `− 1K, we have

α(τ + i) = `α2 + αi = `(tα − n) + αi = tτ − `n + αi 6∈ O because αi 6∈ O and but Λi = [`, τ + i] ⊆ O
so Λi is not stable by multiplication by O′′. Eventually, α 6∈ O ⊇ Λ` = [1, `τ ] so Λ` is not stable by

multiplication by O′′. Whence there are ` descending isogenies and only one ascending isogeny.

Now we treat the general case: Λ is no longer homothetic to O but we can reduce to this case. Since the

action of Cl(O) on Ell(O) and maps E = C/Λ and an ideal a of O to C/a−1Λ and since C/O ∈ Ell(O), we

can assume that Λ is an ideal a of O. Multiplying a by a principal ideal does not change the isomorphism
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class of E and, furthermore, every ideal class in Cl(O) contains infinitely many ideals of prime norm by

[19, Theorems 7.7. (iii) and 9.12] so we may assume that q := N(a) is a prime number 6= `. We consider

the isogeny ϕa : E = C/a −→ E0 := C/a−1a = C/O whose kernel is E[a]. We saw that b 7−→ bO′ and

b 7−→ b∩O′ are bijections between ideals of norm q of O and O′, respectively when O ⊆ O′ and O ⊇ O′.
Then, we can associate an ideal a′ of norm q in O′ to a. Consider the isogeny ϕa′ : E′ −→ E′0 such that

ker(ϕa′) = E′[a′]. We claim that the isogeny ϕ0 : E0 −→ E′0 such that ker(ϕ0) = ϕa(ker(ϕa′ ◦ ϕ)) makes

the diagram commute :

E

ϕ

��

ϕa // E0

ϕ0

��
E′

ϕa′ // E′0

.

By [15, Corollary III.4.11], it suffices to prove that ker(ϕa′ ◦ϕ) = ker(ϕ0 ◦ϕa). We clearly have ker(ϕa′ ◦
ϕ) ⊆ ker(ϕ0 ◦ ϕa) and we conclude because both ϕa′ ◦ ϕ and ϕ0 ◦ ϕa have degree `q. ϕa and ϕa′ are

horizontal so ϕ is ascending, horizontal or descending if and only if ϕ0 is too. Since E0 ' C/O, we

conclude by the case we treated above.

To conclude, it remains to identify descending `-isogenies with the same domains and codomains.

This will explain the factor [O× : O′×] in case (i) (` - [OK : O]).In case (ii) (`|[OK : O]), this factor will

not appear because we will have O× = O′× = {±1} since the only orders with non-trivial unit group are

maximal in K = Q(i) or K = Q(
√
−3) by [19, Exercise 5.9].

Let ϕ,ψ : E −→ E′ be two descending `-isogenies. Then ϕ and ψ are represented by the complex

multiplication by α and β ∈ K respectively. By [15, exercise 6.10.(b)], the endomorphisms ψ◦ϕ̂ and ϕ◦ψ̂ ∈
End(E′) are represented by `βα−1 and `αβ−1 ∈ O′ = [1, `τ ] respectively. Let us write `βα−1 = a+ b`τ ,

`αβ−1 = c + d`τ , with a, b, c, d ∈ Z, τ2 − tτ + n = 0, with t := TrK/Q(τ) ∈ Z and n := NK/Q(τ) ∈ Z.

Then, we have:

`2 = `βα−1`αβ−1 = (a+ b`τ)(c+ d`τ) = ac+ `(bc+ ad)τ + `2bdτ2 = ac+ tbd`2 + `(bc+ ad− `nbd)τ.

It follows that `2|ac. If ` - c, then `2|a and bc + ad − `nbd = 0 so `2|b so `2|`βα−1 i.e. ψ ◦ ϕ̂ factors

through [`2], which is impossible because deg(ψ ◦ ϕ̂) = `2 and deg([`2]) = `4. Hence `|c. For the same

reason, `|a. Hence, βα−1 ∈ O and αβ−1 ∈ O so that αβ−1 ∈ O×. ϕ and ψ are already considered up

to multiplication by an element of Aut(E′). But Aut(E′) corresponds to O′× by complex multiplication.

Hence, there are [O× : O′×] descending `-isogenies E −→ E′.

Remark 1.26. In the course of this proof, we obtained that every horizontal `-isogeny comes from a

proper prime ideal of norm `.

1.4.2 Graph refolding and the forgetful map

Forgetting the K-orientation, one can always consider supersingular `-isogeny graphs whose set of vertices

is SS(p), the set of isogeny classes of supersingular elliptic curves. We have a natural map Ell(K) −→
SS(p), called the forgetful map. This map cannot be injective since Ell(K) is infinite (because K has

infinitely many orders of conductor prime to p) and SS(p) is finite of cardinality close to p
12 (by [15,

Theorem V.4.1.(c)]). As a consequence, K-oriented supersingular isogeny graphs refold when we forget

the orientation (see Figures 1.1 and 1.2).

However, the cryptographic constructions of OSIDH use j-invariants alone so the O-orientations we

consider on a given elliptic curves might be ambiguous. That is why we look for partial injectivity results

of the forgetful map. Indeed, we can always restrict the set of vertices to the finite subset:

SSO(p) ∩ im(ρ) =
⋃
O⊆O′

ρ(Ell(O′))
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formed of (not necessarily primitively) O-oriented supersingular elliptic curves obtained by the reduction

map ρ.

23a+21

69

1717 17

21

1556a+4423a+21

23a+2156a+44

15

64

1721

56a+44

Figure 1.1: Representation of a connected component (with volcano structure) of G2(Q(i), 79), the Q(i)-
oriented supersingular 2-isogeny graph over F792 up to depth 4. Here, a is the generator of F792/F79 and
satisfies a2 − a+ 3 = 0.

69

15 2164

1723a+21

56a+44

Figure 1.2: Supersingular 2-isogeny graph over F792 .

Theorem 1.27. Let ∆ := disc(O). If |∆| < p, then the map SSO(p) ∩ im(ρ) −→ SS(p) is injective.

Actually, this theorem is a direct consequence of the following proposition:

Proposition 1.28. Let E/Fp2 be a supersingular elliptic curve admitting two distinct K-orientations

(E, ι1), (E, ι2) ∈ im(ρ). Let O1 := ι−1
1 (End(E)) and O2 := ι−1

2 (End(E)) and ∆i := disc(Oi) for all

i ∈ {1, 2}. Then ∆1∆2 ≥ p2.

Proof. This proof uses quaternion arithmetic (especially in case 2). We refer to [24] and Appendix A.3

for the prerequisites.
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Case 1: Suppose that ι1(O1) = ι2(O2). Then, ι−1
2 ◦ ι1 is a field automorphism of K inducing an

isomorphism O1
∼−→ O2. Hence O1 = O2 and we either have ι2(α) = ι1(α) or ι2(α) = ι1(α) for all

α ∈ K. Since ι1 and ι2 are distinct, the latter equation holds. Considering Galois action like in the

proof of Proposition 1.13, we get that (E, ι2) = (E(p), ι
(p)
1 ). In particular, E = E(p). Then, we have

(E, ι1), (E, ι
(p)
1 ) ∈ ρ(Ell(O)), where O := O1 = O2. Since the action of Cl(O) on ρ(Ell(O)) is transitive

by Theorem 1.18, there exists an invertible ideal a ⊆ O of norm prime to p such that a ·(E, ι1) = (E, ι
(p)
1 ).

Let ϕ := ϕa and φp the p-th power Frobenius endomorphism. Then ι2 = φp∗(ι1) = ϕ∗(ι1). It follows

that:

∀α ∈ K, 1

p
φpι(α)φ̂p =

1

d
ϕι(α)ϕ̂,

with d := deg(ϕ). Multiplying by ϕ̂ on the left and by φp on the left, we get that ϕ̂ ◦ φp commutes

with ι(K), so the exists α ∈ O such that ϕ̂ ◦ φp = ι(α) (otherwise, ι(K) and ϕ̂ ◦ φp would generate

the quaternion algebra End0(E), which would be commutative). Hence, N(α) = deg(ϕ̂ ◦ φp) = dp, so

p|N(α) = αα. Hence, if p is inert, then pO is prime so α ∈ pO or α ∈ O. Either way α ∈ pO, so p2|N(α)

and p|d. But d = N(a) by point (ii) of Proposition 1.15 and N(a) is prime to p. Contradiction. Since p

does not split in K, p ramifies so we have
Ä

∆K

p

ä
= 0 i.e. p|∆K |∆ by Lemma 1.25. Hence, |∆| ≥ p, so

∆1∆2 = ∆2 ≥ p2.

Case 2: Suppose that ι1(O1) 6= ι2(O2). Then, ι1(O1) and ι2(O2) do not commute (the commutativity

implies the equality, by arguments we already gave). Let αi be the image by ιi of a generator of Oi for

all i ∈ {1, 2}. Then, the commutator β := [α1, α2] = α1α2 − α2α1 is not zero. By computation, we get

the following expression for the reduced norm of β:

nrd(β) =
∆1∆2 − T 2

4
(?),

with T := 2 Tr(α1α2)−Tr(α1) Tr(α2). By [24, Theorem 42.1.19], End0(E) = End(E)⊗ZQ is a quaternion

algebra that ramifies at p and ∞ and End(E) is a maximal order in End0(E). Since End0(E) ramifies

at p, Bp := End0(E)⊗Q Qp is the unique division quaternion algebra over Qp, so we have an embedding

End0(E) ↪→ Bp mapping End(E) to the valuation ring Op of Bp formed of elements with non-negative

p-adic valuation. Furthermore, there is a unique maximal two sided ideal Pp ⊆ Op (see [24, Theorem

13.3.11]). Pp is formed of elements of positive p-adic valuation:

Pp = {α ∈ Op | vp(nrd(α)) > 0} = {α ∈ Op | nrd(α) ≡ 0 [p]}.

By [24, Theorem 13.3.11.(b)] again, the quotient Op/Pp is the finite field Fp2 so it is commutative. It

follows that β = [α1, α2] ∈ Pp, so that nrd(β) ≡ 0 [p].

By (?), it follows that
√

∆1∆2 +|T | ≡ 0 [2p] or
√

∆1∆2−|T | ≡ 0 [2p] (
√

∆1∆2 ∈ Z since O1,O2 ⊆ K).

Moreover, End0(E) ramifies at ∞ so the norm is a positive definite function by [24, Exercise 2.4] and we

have N(β) > 0 since β 6= 0. It follows that
√

∆1∆2 > |T |, so that 2p ≤
√

∆1∆2 + |T | ≤ 2
√

∆1∆2 i.e.

∆1∆2 ≥ p2.

1.5 Isogeny chains and ladders

1.5.1 Definition

We now introduce the basic algorithmic foundations of the OSIDH protocol.

Definition 1.29. An `-isogeny chain of length n is a sequence of `-isogenies:

E0
ϕ0 // E1

ϕ1 // · · ·
ϕn−2 // En−1

ϕn−1 // En .

We say that it is K-oriented if all elliptic curves Ei (0 ≤ i ≤ n) and isogenies ϕi : Ei −→ Ei+1
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(0 ≤ i ≤ n− 1) are K-oriented.

A K-oriented `-isogeny chain (ϕi : Ei −→ Ei+1)0≤i≤n−1 is descending, horizontal or ascending if all

the ϕi are respectively descending, horizontal or ascending.

In the following, we shall only consider K-oriented isogeny chains, so we shall omit to mention that

they are K-oriented.

Definition 1.30. An `-ladder of length n and degree q is a commutative diagram of `-isogeny chains

(ϕi : Ei −→ Ei+1)0≤i≤n−1 and (ϕ′i : Fi −→ Fi+1)0≤i≤n−1:

E0

ψ0

��

ϕ0 // E1

ψ1

��

ϕ1 // · · ·
ϕn−2 // En−1

ψn−1

��

ϕn−1 // En

ψn

��
F0

ϕ′0 // F1

ϕ′1 // · · ·
ϕ′n−2 // Fn−1

ϕ′n−1 // Fn

such that ψi : Ei −→ Fi is a q-isogeny for all i ∈ J0 ; nK. Such an `-ladder is often denoted by

ψ : (Ei, ϕi)0≤i≤n−1 −→ (Fi, ϕ
′
i)0≤i≤n−1 and referred to as a q-isogeny between `-isogeny chains.

An `-ladder ψ : (Ei, ϕi)0≤i≤n−1 −→ (Fi, ϕ
′
i)0≤i≤n−1 is descending, horizontal or ascending if all the

ϕi are respectively descending, horizontal or ascending. It is level if ψ0 : E0 −→ F0 is horizontal.

Lemma 1.31. Suppose ` and q are distinct prime numbers. Let ψ : ((Ei, ιi), ϕi) −→ ((Fi, ι
′
i), ϕ

′
i) be an

`-lader of length n between K-oriented `-isogeny chains. Then ψ is level if and only if ι−1
i (End(Ei)) =

ι′
−1
i (End(Fi)) for all i ∈ J0 ; nK. In particular, if ψ is level and descending, horizontal or ascending,

then the `-isogeny chain (ϕ′i : Fi −→ Fi+1)0≤i≤n−1 is respectively descending, horizontal or ascending.

Proof. Suppose that ψ is level. Then we prove that Oi := ι−1
i (End(Ei)) equals O′i := ι′

−1
i (End(Fi)) by

induction on i ∈ J0 ; nK. Since ψ0 is horizontal, the result follows immediately at i = 0.

Now, let i ∈ J0 ; n− 1K and suppose that Oi = O′i. Suppose that ϕi : Ei −→ Ei+1 is descending.

Then Oi+1 ⊆ Oi and [Oi : Oi+1] = ` by Proposition 1.5, and ϕ′i : Fi −→ Fi+1 must be descending

too, otherwise, we would have Oi+1 ⊆ Oi = O′i ⊆ O′i+1 and ` = [Oi : Oi+1]|[O′i+1 : Oi+1] so ψi+1 is

ascending and [O′i+1 : Oi+1] = q by Proposition 1.5. Contradiction because ` - q. Hence ϕ′i is descending

and Oi+1 = O′i+1 since they have the same conductor. We treat the cases where ϕi is horizontal and

ascending likewise. Whence the result, ψ beign trivially level when Oi = O′i for all i ∈ J0 ; nK.

We now introduce a way to obtain a level and descending `-ladder. Let q and ` be distinct prime

numbers distinct from p. Let O0 be an order of K whose conductor is prime to `, p and q (for instance

O0 = OK). Let Oi := Z+ `iO0 for all i ∈ J0 ; nK.
Suppose that q splits in K. Let q be a prime ideal of O0 lying above q. Then q is proper and has

norm q and so does q(i) := q ∩ Oi for all i ∈ J0 ; nK (as we proved in Lemma 1.25).

Let (ϕi : (Ei, ιi) −→ (Ei+1, ιi+1)) be a descending `-isogeny chain of length n such that Ei is primi-

tively Oi-oriented for all i ∈ J1 ; nK. For all i ∈ J0 ; nK, let:

(Fi, ι
′
i) := q(i) · (Ei, ιi) = (Ei/Ei[q

(i)], ψi∗(ιi)),

where ψi := ϕq(i) . Then, there is an `-isogeny chain (ϕ′i : Fi −→ Fi+1) such that the following diagram

commutes:

E0

ψ0

��

ϕ0 // E1

ψ1

��

ϕ1 // · · ·
ϕn−2 // En−1

ψn−1

��

ϕn−1 // En

ψn

��
F0

ϕ′0 // F1

ϕ′1 // · · ·
ϕ′n−2 // Fn−1

ϕ′n−1 // Fn

i.e. forms a descending `-ladder. The `-isogeny chain (ϕ′i : Fi −→ Fi+1)0≤i≤n−1 at the bottom of the

diagram will be denoted by q · ((Ei, ιi), ϕi) or simply q · (Ei, ϕi). The ϕ′i are well-defined by [15, corollary

III.4.11] according to the following lemma:
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Lemma 1.32. ker(ψi) ⊆ ker(ψi+1 ◦ ϕi) for all i ∈ J0 ; n− 1K.

Proof. Let i ∈ J0 ; n− 1K and P ∈ ker(ψi) = Ei[q
(i)]. Then, for all α ∈ q(i), ιi(α)(P ) = O, so ϕi ◦

ιi(α)(P ) = O. Since:

ιi+1 = ϕi∗(ιi) =
1

`
ϕiιiϕ̂i

we get that ϕi ◦ ιi(α) = ιi+1(α) ◦ϕi for all α ∈ K. Since q(i+1) ⊆ q(i), it follows that ιi+1(α) ◦ϕi(P ) = O

for all α ∈ q(i+1), so that ϕi(P ) ∈ Ei+1[q(i+1)] = ker(ψi+1). This completes the proof.

1.5.2 A practical way to construct descending `-ladders

The last element of this chain (Fn, ι
′
n) = q(n) · (En, ιn) is actually what we want to compute. We start the

computation at level i = 0 and descend the ladder. If q = q(0) is principal, then ψ0 is an endomorphism

and the `-ladder is level so the computation of (F0, ι
′
0) is trivial ((F0, ι

′
0) = (E0, ι0)). It is always the case

when Cl(O0) is trivial i.e. when O0 = OK and:

disc(K) ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}

by [19, theorem 7.30.(i)]. We shall always assume Cl(O0) = Cl(OK) is trivial in the following.

Now, we explain the descent. First, we assume that |disc(On)| < p, so that all K-oriented elliptic

curves of the ladder can be represented as j-invariants by theorem ?? and we can use modular equations.

Assume that the ladder is constructed up to level i.We want to compute j(Fi+1), the `-isogeny such that

the following diagram commutes:

Ei

ψi

��

ϕi // Ei+1

ψi+1

��
Fi

ϕ′i // Fi+1

where ϕ′i is a `-isogeny ψi+1 is a q-isogeny.Then, j(Fi+1) is a solution of the modular equations:{
Φ`(j(Fi), x) = 0

Φq(j(Ei+1), x) = 0
⇐⇒ gcd(Φ`(j(Fi), x),Φq(j(Ei+1), x)) = 0 (?)i.

However, a priori this equation can admit multiple solutions so we want to make sure that the solution is

unique and corresponds to (Fi+1, ι
′
i+1) = q(i+1) ·(Ei+1, ιi). This will be the case under some assumptions.

Proposition 1.33. Let ∆K := disc(K). We assume that:

(i) p > q`2n|∆K |.

(ii) (F0, ι
′
0) = q(0) · (E0, ι0) and (F1, ι

′
1) = q(1) · (E1, ι1).

(iii) (q(1))2 is not principal in O1.

(iv) j(Fi) is a solution of:

gcd(Φ`(j(Fi−1), x),Φq(j(Ei), x)) = 0 (?)i−1

for all i ∈ J1 ; nK.

Then (Fi, ι
′
i) = q(i) · (Ei, ιi) for all i ∈ J0 ; nK.

Proof. We prove by induction on i ∈ J0 ; nK that (Fi, ι
′
i) = q(i) · (Ei, ιi). We already know that the result

holds for i = 0 and i = 1.

Let i ∈ J1 ; n− 1K. Let us assume that (Fi, ι
′
i) = q(i) · (Ei, ιi). Since j(Fi+1) is solution of (?)i, there

exist an `-isogeny ϕ′i : Fi −→ Fi+1 and a q-isogeny ψi+1 : Ei+1 −→ Fi+1. Since (Fi, ι
′
i) = q(i) · (Ei, ιi) and

q(i) is invertible (its norm is q, which is prime to [OK : Oi] = `i), ψi is an horizontal isogeny by point
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(iv) of Proposition 1.15. Hence, we have ι′i
−1

(End(Fi)) = Oi (with ι′i = ψi∗(ιi)). Since ϕ′i has degree `,

ϕ′i∗(ι
′
i)
−1(End(Fi+1)) is a suborder of OK of index `i−1, `i or `i+1 by Proposition 1.5. Since ψi+1 has

degree q, ψi+1∗(ιi+1)−1(End(Fi+1)) is a suborder of OK of index `i+1 or q`i+1. Hence, if ϕ′i∗(ι
′
i) and

ψi+1∗(ιi+1) were distinct K-orientation, we would have q2`4i+4∆2
0 ≥ p2 by Proposition 1.28,contradicting

point (i). Whence, ϕ′i∗(ι
′
i) = ψi+1∗(ιi+1) i.e. :

(ϕ′i ◦ ψi)∗(ιi) = (ψi+1 ◦ ϕi)∗(ιi).

Let φ := ϕ′i ◦ ψi and ψ := ψi+1 ◦ ϕi. Then, ψ̂ ◦ φ commutes with ιi(K) (since ψ and φ have the same

degree) and there exists α ∈ Oi such that ψ̂ ◦ φ = ιi(α).

We shall prove that α = q`, so that ϕ′i ◦ ψi = ψi+1 ◦ ϕi, whence ker(ψi+1) = ϕi(ker(ϕ′i ◦ ψi)) =

Ei+1[q(i+1)] and the proof will be complete.

Let ι′i+1 := φ∗(ιi) = ψ∗(ιi). Since ϕ′i has degree ` and ψi+1 has degree q 6= `, the argument given in

the proof of Lemma 1.31 ensures that ψi+1 is horizontal, i.e. that ι′i+1
−1

(End(Fi+1)) = Oi+1. ψi+1 being

horizontal of degree q, Remark 1.26 ensures that ψi+1 is given by an invertible ideal of norm q, that is to

say q(i) or q(i), so we either have ker(ψi+1) = Ei+1[q(i+1)] or ker(ψi+1) = Ei+1[q(i+1)]. We assume that

the latter holds.

We have:

ι′i+1(α) =
1

q`
ψ ◦ ιi(α) ◦ ψ̂ =

1

q`
ψ ◦ ψ̂ ◦ φ ◦ ψ̂ = φ ◦ ψ̂ ∈ End(Fi+1),

so that α ∈ Oi+1. Let τ ∈ K be a generator of Oi. Then, `τ is a generator of Oi+1 so there exist a, b ∈ Z
such that α = a+ b`τ , so that:

N(α) = αα = (a+ b`τ)(a+ b`τ) = a2 + ab`Tr(τ) + `2b2N(τ).

Since `2q2 = deg(ιi(α)) = N(α), it follows that `|a. Hence, α ∈ `Oi. Let β := α
` ∈ Oi. Then:“ϕi ◦‘ψi+1 ◦ ϕ′i ◦ ψi = [`] ◦ ιi(β) so that [`q] ◦ ϕ′i ◦ ψi = [`] ◦ ψi+1 ◦ ϕi ◦ ιi(β),

i.e.

[q] ◦ ϕ′i ◦ ψi = ψi+1 ◦ ϕi ◦ ιi(β) (?).

Let P ∈ Ei[q
(i)] = ker(ψi). Then [q] ◦ ϕ′i ◦ ψi(P ) = O, so that ψi+1 ◦ ϕi ◦ ιi(β)(P ) = O i.e.

ϕi ◦ ιi(β)(P ) ∈ ker(ψi+1) = Ei+1[q(i+1)]. Hence, for all γ ∈ q(i+1), we have:

O = ιi+1(γ) ◦ ϕi ◦ ιi(β)(P ) = ϕi ◦ ιi(γβ)(P ),

so that ιi(γβ)(P ) ∈ ker(ϕi). But for all γ ∈ q(i+1), we have ιi(γβ)(P ) = O because P ∈ Ei[q
(i)].

Since q splits in K,q(i+1) and q(i+1) are distinct and we have q(i+1) + q(i+1) = Oi+1. It follows that

ιi(β)(P ) ∈ ker(ϕi). But ker(ϕi) is a cyclic group of order ` and the order of ιi(β)(P ) ∈ Ei[q(i)], which

is a cyclic group of order q. Hence, the order of ιi(β)(P ) divides gcd(`, q) = 1 i.e. ιi(β)(P ) = O. We

just have proved that ker(ψi) = Ei[q
(i)] ⊆ ker(ιi(β)). Then, by [15, Corollary III.4.11], there exists an

isogeny λ : Fi −→ Ei such that:

ιi(β) = λ ◦ ψi.

By (?), it follows that [q] ◦ ϕ′i = ψi+1 ◦ ϕi ◦ λ.

Let P ∈ Fi[q(i)]. Since Fi[q
(i)] ⊆ Fi[q], we have [q]◦ϕ′i(P ) = ϕ′i([q]P ) = O so that ψi+1◦ϕi◦λ(P ) = O

i.e. ϕi ◦ λ(P ) ∈ ker(ψi+1) = Ei+1[q(i+1)]. Hence, for all γ ∈ q(i+1), we have:

O = ιi+1(γ) ◦ ϕi ◦ λ(P ) = ϕi ◦ ιi(γ) ◦ λ(P ),

so that ιi(γ) ◦ λ(P ) ∈ ker(ϕi). But ker(ϕi) has order ` and ιi(γ) ◦ λ(P ) ∈ Ei[q] so ιi(γ) ◦ λ(P ) = O. We
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also have for all γ ∈ q(i+1):

ιi(γ) ◦ λ(P ) = λ ◦ ι′i(γ)(P ) = O,

since λ∗(ι
′
i) = (λ ◦ ψi)∗(ιi) = (ιi(β))∗(ιi) = ιi. Since q(i+1) + q(i+1) = Oi+1, it follows that λ(P ) = O.

Hence Fi[q
(i)] ⊆ ker(λ) and λ has degree q, so Fi[q

(i)] = ker(λ). Since Ei is the codomain of λ, we

have (Ei, ιi) = q(i) · (Fi, ι′i) = (q(i))2 · (Ei, ιi) and (q(i))2 is principal by faithfulness of the group action

(Theorem 1.18). Hence, there exists γ ∈ Oi such that (q(i))2 = γOi, so that γ ∈ (q(i))2 ⊆ (q(1))2 i.e.

γO1 ⊆ (q(1))2 but N((q(1))2) = N((q(i))2) = N(γ) (by [19, Proposition 7.20.(i)]) so γO1 = (q(1))2, which

contradicts (iii). We conclude that ker(ψi+1) = Ei+1[q(i+1)], so that (Fi+1, ι
′
i+1) = q(i+1) · (Ei+1, ιi+1).

This completes the proof.

Under the assumptions of Proposition 1.33, (?)i admits only one solution for all i ≥ 1, and there is no

ambiguity to determine j(Fi+1). Since Cl(OK) is trivial, we also know that j(F0) = j(E0). However, the

solution of (E0) can be j(F1) = j(E1/E1[q(1)]) or j(E1/E1[q(1)]). Fortunately, (q(1))2 is not principal, so

that q(1) and q(1) have distinct images in Cl(O1) and j(E1/E1[q(1)]) 6= j(E1/E1[q(1)]) by faithfulness of

the ideal class group action and by Theorem 1.27. Hence, we need to compute both j-invariants. This

can be made by computing E1[q(1)] and E1[q(1)] and using Vélu’s formulas [11].

Remark 1.34. The choice of direction q and q at step i = 1 is not compulsory, and the non-principality of

(q(1))2 in O1 can be a restrictive hypothesis in general, especially if we consider multiple prime ideals like

in the real OSIDH cryptosystem. Actually, when (q(i))2 is principal in Oi, j(Ei/Ei[q(i)]) = j(Ei/Ei[q(i)])

and equation (?)i−1 admits only one solution, so there is no ambiguity till (q(i))2 is no longer principal

in Oi. Instead of determining the direction at rank 1, we may then determine the direction at rank i0

such that (q(i0))2 is not principal in Oi0 .

Such an index i0 always exists. Indeed, if (q(i))2 = αOi for a certain α ∈ Oi, then N(α) = q2 by

[19, Lemma 7.14.(i)]. Let τ be a generator of OK , t its trace and d its norm. Then, Oi = Z+ `iτZ and

α = a+ b`iτ with a, b ∈ Z, so that:

q2 = N(α) = (a+ b`iτ)(a+ b`iτ) = a2 + ab`it+ b2`2id.

If b 6= 0, we get that a is a root of the polynomial X2 + b`itX + b2`2id− q2 whose discriminant is:

b2`2i(t2 − 4d2) + 4q2 = b2`2i∆K + 4q2 ≤ 4q2 + `2i∆K .

There is no integral root when this quantity is < 0, i.e. once i ≥ i0 := blog`(2q/
√
|∆K |)c+ 1. Hence, if

i ≥ i0, we must have b = 0, so a = q and (q(i0))2 = qOi, so that q2 = qOK and q ramifies in K, which is

impossible. It follows that (q(i))2 is not principal for i ≥ i0.
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Chapter 2

The OSIDH cryptosystem

2.1 A first naive Diffie Hellman protocol

Let K be a quadratic imaginary number field such that OK has a trivial ideal class group Cl(OK). In

practice, K = Q(i) or Q(
√
−3). Let p be a prime that does not split in K. Let ` be a prime distinct from

p, n ∈ N∗ (the length of the descending `-isogeny chains) and Oi := Z+ `iOK for all i ∈ J0 ; nK.
Let q1, · · · , qt be distinct primes, distinct from ` and p that all split in K and let qj be a prime

OK-ideals lying above qj for all j ∈ J1 ; tK. When there is no ambiguity, we shall denote qj instead

q
(n)
j := qj ∩ On. We can assume that the ideal classes [qj ] of the qj in Cl(On) generate Cl(On). The

action of the [qj ] and [qj ]
−1 = [qj ] on ρ(Ell(On)) can be effectively computed by the method of Paragraph

1.5.2 provided that we represent every element (E, ι) ∈ ρ(Ell(On)) as the last element of a descending

`-isogeny chain:

(E0, ι0) −→ · · · −→ (En, ιn) = (E, ι).

Hence, the set Cl(On) acts upon is not ρ(Ell(On)) per se, but the set of descending `-isogeny chains

of length n with origin in ρ(Ell(OK)) (see Figure 2.1).

E0

ρ(Ell(O1))

ρ(Ell(O2))

ρ(Ell(On−1))

ρ(Ell(On))

En

E1

E2

En−1

q
(n)
j
· En

q
(1)
j
· E1

q
(2)
j
· E2

q
(n−1)
j

· En−1

qj

Figure 2.1: Action of the prime ideal qj on the descending `-isogeny chain.
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Alice and Bob separately choose secret exponents e1, · · · , et and f1, · · · , ft lying in the integer range

J−r ; rK (where r is a small positive integer) and respectively compute the action of:

a :=
t∏

j=1

q
ej
j and b :=

t∏
j=1

q
fj
j

on (Ei, ιi)0≤i≤n step by step, using the method of Paragraph 1.5.2.

Then, Alice sends (EA,i, ιA,i)0≤i≤n := a · (Ei, ιi)0≤i≤n to Bob (as a list of j-invariants) and Bob sends

(EB,i, ιB,i)0≤i≤n := b · (Ei, ιi)0≤i≤n to Alice. In the end, Alice computes a · (EB,i, ιB,i)0≤i≤n and Bob

computes b · ·(EA,i, ιA,i)0≤i≤n, so that both parties know the secret chain:

a · (EB,i, ιB,i)0≤i≤n = b · (EA,i, ιA,i)0≤i≤n = ab · (Ei, ιi)0≤i≤n.

The key exchange protocol is illustrated in Figure 2.2.

(Ei)0≤i≤n

b · (Ei)0≤i≤n ab · (Ei)0≤i≤n

a · (Ei)0≤i≤n

Alice’s secret a

Bob’s secret b b

a

Figure 2.2: Naive Oriented Supersingular Isogeny Diffie-Hellman key exchange protocol. Public data in
black, Alice’s secret data in green, Bob’s secret data in blue, shared secret in red.

Unfortunately, this protocol is insecure because the the attacker can recover the secret ideal class

[a] with the knowledge of the chains (Ei, ιi)0≤i≤n and a · (Ei, ιi)0≤i≤n. We present two attacks due to

Colò and Kohel [4, § 5.1] in Sections 3.1 and 3.2. To secure OSIDH, the authors came up with a way to

perform the key exchange that does not involve an explicit exchange of the chains.

2.2 The OSIDH protocol

OSIDH is basically the Diffie-Hellmann key exchange presented in the previous section. However, the

parties do not exchange the chains (EA,i, ιA,i) and (EB,i, ιB,i) (which makes them vulnerable to an attack)

while still giving enough data to recover (EAB,i, ιAB,i).

Alice still computes (EA,i, ιA,i) := a · (Ei, ιi) but only transmits the end of the chain EA,n, which

is the most interesting part (since Cl(On) is the biggest class group). Bob wants to compute EAB,n =

b ∩ On · EA,n but without any further information, he cannot do this computation. Indeed, he needs at

least to know the On-orientation of EA,n to determine the class group action (computing the kernels and

using Vélu’s formulas) and this information is contained in the whole isogeny chain (EA,i, ιA,i) (since ιA,n

could be obtained with the knowledge ιA,0 and the `-isogenies EA,i −→ EA,i+1 for all i ∈ J0 ; n− 1K).
Otherwise, to compute qj · EA,n = EA,n/EA,n[qj ], Bob does not know how to chose between the qj + 1

possible values of EA,n[qj ]. Actually, the action of powers of qj and qj on EA,n for all j ∈ J1 ; tK is

enough to determine EAB,n.
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We recall that a and b can be written:

a =
t∏

j=1

q
ej
j and b =

t∏
j=1

q
fj
j ,

with small exponents e1, · · · , et, f1, · · · , ft ∈ J−r ; rK. Note that we allow negative exponents as we

identify q−kj with qkj for all k ∈ N∗ and j ∈ J1 ; tK. In the OSIDH protocol, Alice computes for all j ∈
J1 ; tK the chains qkj · (EA,i, ιA,i) and transmits to Bob the ending element [qj ]

k ·EA,n for all k ∈ J−r ; rK,
forming the qj-isogeny chain:

[qj ]
−r · EA,n −→ · · · −→ EA,n −→ · · · −→ [qj ]

r · EA,n.

This data is enough for Bob to compute [b] · EA,n. We explain how. Suppose that f1, f2 ≥ 0. Bob

knows the chain:

EA,n −→ · · · −→ [q1]f1 · EA,n

and [q2] · EA,n, which enables him to construct the ladder:

[q2] · EA,n // [q1][q2] · EA,n // · · · // [q1]f1−1[q2] · EA,n // [q1]f1 [q2] · EA,n

EA,n

q2

OO

q1 // [q1] · EA,n

OO

// · · · // [q1]f1−1 · EA,n

OO

// [q1]f1 · EA,n,

OO

using q1 and q2-modular equations only as in Paragraph 1.5.2. This can be done without ambiguity

(there is always a unique solution to the system of modular equations) by the same arguments we used in

Proposition 1.33. Indeed, we know that the elliptic curve at the top left corner is [q2] ·EA,n, that (q
(n)
2 )2

is not principal in On and that the map SSOn(p) ∩ im(ρ) −→ SS(p) is injective by Theorem 1.27. Going

further, Bob obtains [q1]f1 [q2]2 · EA,n from [q2]2 · EA,n and the chain:

[q2] · EA,n −→ · · · −→ [q1]f1 [q2] · EA,n

and repeats the process until reaching [q1]f1 [q2]f2 ·EA,n. The method consists in computing the following

diagram, horizontal chain by horizontal chain, starting from the bottom:

[q2]f2 · EA,n // [q1][q2]f2 · EA,n // · · · // [q1]f1−1[q2]f2 · EA,n // [q1]f1 [q2]f2 · EA,n

[q2]f2−1 · EA,n

OO

// [q1][q2]f2−1 · EA,n

OO

// · · · // [q1]f1−1[q2]f2−1 · EA,n

OO

// [q1]f1 [q2]f2−1 · EA,n

OO

...

OO

...

OO

. . .
...

OO

...

OO

[q2] · EA,n

OO

// [q1][q2] · EA,n

OO

// · · · // [q1]f1−1[q2] · EA,n

OO

// [q1]f1 [q2] · EA,n

OO

EA,n

q2

OO

q1 // [q1] · EA,n

OO

// · · · // [q1]f1−1 · EA,n

OO

// [q1]f1 · EA,n.

OO

For negative exponents, the method is the same but starts from [q1]−1 · EA,n, [q1]−2 · EA,n...

In order to compute [q1]f1 [q2]f2 [q3]f3 · EA,n, Bob computes a diagram as above with the chains:

EA,n −→ · · · −→ [q1]f1 · EA,n
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and [q1]f1 · EA,n −→ · · · −→ [q1]f1 [q2]f2 · EA,n

at the bottom (the latter following the first) and the chain:

EA,n −→ · · · −→ [q3]f3 · EA,n,

on the left side.

More generally, for j ∈ J1 ; t− 1K, assuming Bob has already computed the chains:

EA,n −→ [q1] · EA,n −→ · · · −→ [q1]f1 · EA,n,

...

j−1∏
k=1

[qk]fk · EA,n −→

(
j−1∏
k=1

[qk]fk

)
[qj ] · EA,n −→ · · · −→

j∏
k=1

[qk]fk · EA,n.

Bob can compute the following diagram from bottom and left to top and right for all k ∈ J1 ; jK:

[qj+1]fj+1
∏k−1
l=1 [ql]

fl · EA,n // [qj+1]fj+1

Ä∏k−1
l=1 [ql]

fl
ä

[qk] · EA,n // · · · // [qj+1]fj+1
∏k
l=1[ql]

fl · EA,n

...

OO

...

OO

. . .
...

OO

[qj+1]
∏k−1
l=1 [ql]

fl · EA,n

OO

// [qj+1]
Ä∏k−1

l=1 [ql]
fl
ä

[qk] · EA,n

OO

// · · · // [qj+1]
∏k
l=1[ql]

fl · EA,n

OO

∏k−1
l=1 [ql]

fl · EA,n

qj+1

OO

qk //
Ä∏k−1

l=1 [ql]
fl
ä

[qk] · EA,n

OO

// · · · // ∏k
l=1[ql]

fl · EA,n,

OO

starting from the chain:

EA,n −→ · · · −→ [qj+1]fj+1 · EA,n

on the left side for k = 1. The result for k = j on the right side of the diagram is:

j∏
k=1

[qk]fk · EA,n −→

(
j∏

k=1

[qk]fk

)
[qj+1] · EA,n −→ · · · −→

j+1∏
k=1

[qk]fk · EA,n,

making it possible to repeat the procedure once again at rank j+ 1. For j = t, Bob finally obtains at the

end of the chain:
t∏

k=1

[qk]fk · EA,n = [b] · EA,n.

In parallel, Alice performs the symmetric process with the data sent by Bob.

The real OSIDH protocol as introduced in [4, § 5.2] is presented in Figure 2.3.
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Public parameters:
(Ei, ιi)0≤i≤n, q1, · · · , qt

Alice

e1, · · · , et ∈R J−r ; rK

a :=
∏t
j=1 q

ej
j

(EA,i, ιA,i) := [a] · (Ei, ιi)

EAB,n := [a] · EB,n

Bob

f1, · · · , ft ∈R J−r ; rK

b :=
∏t
j=1 q

fj
j

(EB,i, ιB,i) := [b] · (Ei, ιi)

EAB,n := [b] · EA,n

[qj ]−r · EA,n −→ · · · −→ [qj ]r · EA,n (1 ≤ j ≤ t)

[qj ]−r · EB,n −→ · · · −→ [qj ]r · EB,n (1 ≤ j ≤ t)

Figure 2.3: The OSIDH protocol as presented in [4, § 5.2].
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Chapter 3

Cryptanalysis of OSIDH

This chapter studies different attacks against the OSIDH cryptosystem. In the first two sections, we

present two attacks on the naive Diffie Hellman protocol of Paragraph 2.1, recovering the secret ideal

classes when the chains are explicitely exchanged. These attacks are due to [4, § 5.1] but we provide more

details. In particular, both attacks include a lattice reduction step that was not suggested in the original

article and that we use in another attack.

The three next sections study attacks on the real OSIDH key exchange. Section 3.3 presents an attack

due to Onuki [12, § 6.3] exploiting the fact that one can recover a descending `-isogeny chain with the

knowledge of a K-oriented endomorphism at each level. Section 3.4 presents an original attack based on

this approach and coupled with a lattice reduction. Finally, Section 3.5 presents Kuperberg’s quantum

attack.

We also provide implementations of the attacks of Sections 3.5 and 3.4 in SageMath [6] for toy pa-

rameters. The source code can be found on Github [13].

3.1 A first attack using quaternions

This section makes an intensive use of quaternion arithmetic. We refer to Appendix A.3 and to the

lecture notes of Voight [24] for results and vocabulary.

We recall here the problem we have to solve: given a chain (Ei, ιi)0≤i≤n and a chain (Fi, ι
′
i)0≤i≤n =

a · (Ei, ιi)0≤i≤n with a secret ideal class [a] ∈ Cl(On), we want to recover [a], or more exactly, exponents

e1, · · · , et ∈ Z (relatively small) such that [a] =
∏t
j=1[qj ]

ej , so that the action of [a] on descending

`-isogeny chains of length n can be easily computed. The attack consists in the following steps:

1. Recover End(En) and End(Fn) from the chains (Ei, ιi)0≤i≤n and (Fi, ι
′
i)0≤i≤n.

2. Compute a connecting ideal I between End(En) and End(Fn), defining an isogeny En −→ Fn by

the Deuring correspondence.

3. Find an equivalent ideal J to I that is generated by a prime ideal N of On norm N 6= `.

4. Find an ideal a ⊆ On equivalent to N and decompose its class [a] in Cl(On) as a product of powers

of the prime ideal classes [qj ].

3.1.1 Step 1: compute End(En) and End(Fn)

If E/Fp2 is a supersingular elliptic curve, we know that End(E) is a maximal order in the quaternion

algebra Bp,∞ ramifying at p and ∞ (by [24, Theorem 42.1.9]). We have an explicit description of Bp,∞

as Bp,∞ = H(a, b) (a, b ∈ Q), with H(a, b) = Q+Qi+Qj +Qk and:

i2 = a, j2 = b, k = ij, ij = −ji.
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This description follows from [25, Proposition 5.1]:

Bp,∞ =


H(−1,−1) if p = 2

H(−1,−p) if p ≡ 3 [4]

H(−2,−p) if p ≡ 5 [8]

H(−q,−p) if p ≡ 1 [8]

with q ≡ 3 [4] and
Ä
q
p

ä
= −1. Using an isomorphism End0(E) := End(E)⊗Z Q ' Bp,∞, one can express

a Z-basis of End(E) in terms of i,j,k. However, given an endomorphism of E expressed in the Z-basis

of End(E) or equivalently, in terms of 1, i,j, k it is not trivial in general to know how to evaluate it on

points of E, but this evaluation will be necessary to find the endomorphism rings of the elleptic curves

in the chains (Ei, ιi)0≤i≤n and (Fi, ι
′
i)0≤i≤n.

More precisely, following [26], we shall need to evaluate in polynomial time in log(p) = Θ(n) any

element of the Z-basis of End(E) at points of E defined over a field extension of Fp of polynomial

degree in log(p). If it is the case, any linear combination of elements of such a basis with coefficients in

polynomial size in log(p) can be evaluated in polynomial time in log(p). Such a basis will be said useful.

We may restrict the possibility to evaluate to points with known order prime to a certain integer

f ∈ Z, in which case the basis will be said f -useful. We also want this basis to be concise, that is to say

storable in polynomial space in log(p), e.g. with an expression in terms of 1, i,j, k (via the isomorphism

End0(E) ' Bp,∞) of polynomial size in log(p).

In the following of this section, for symplicity, we shall mean polynomial in log(p) everytime we use

the term polynomial.

Definition 3.1. The data given by an isomorphism Φ : Bp,∞
∼−→ End0(E) together with a basis of

End(E) that is (f -)useful and concise (relatively to Φ) is called an (f -)compact representation of End(E).

Generally, an order R ⊆ Bp,∞ or a lattice I ⊆ Bp,∞ will be said concise when given with a concise

Z-basis.

Example 3.2. For p ≡ 3 [4], let E0 be the elliptic curve defined by the Weierstrass equation y2 = x3 +x.

Then End(E0) admits a compact representation given by the isomorphism:

Φ0 : Bp,∞ = H(−1,−p) −→ End0(E0)

mapping i to φ : (x, y) 7−→ (−x, ay) (with a2 = −1) and j to the Frobenius π : (x, y) 7−→ (xp, yp). The

family
Ä
1, φ, φ+π

2 , 1+πφ
2

ä
is a useful and concise basis of End(E0).

In general, the first curve of the chain E0 will be chosen to have a compact representation as in

Example 3.2, in order to simplify the protocol execution. We shall prove that the knowledge of the chain

(Ei, ιi)0≤i≤n will help us construct a compact representation of End(Ei) for all i ∈ J0 ; nK, ensuring that

we can deduce a basis of End(Ei+1) from a basis of End(Ei) for all i ∈ J0 ; n− 1K.

Lemma 3.3. The map:

ψ ∈ End0(Ei) 7−→
1

`
ϕiψ“ϕi ∈ End0(Ei+1)

is an isomorphism of quaternion algebras inducing a ring isomorphism between quaternion orders:

Z+ `End(Ei) ' Z+ ϕi End(Ei)“ϕi.
As a consequence, Z+ ϕi End(Ei)“ϕi has index `3 in End(Ei+1).

Proof. Everything is clear, except maybe the last assertion. Since, Z + `End(Ei) ' Z + ϕi End(Ei)“ϕi,
we have:

disc(Z+ `End(Ei)) = disc(Z+ ϕi End(Ei)“ϕi),
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by [24, Corollary 15.2.9]. By [24, Theorem 15.5.5], we also have:

disc(End(Ei)) = disc(End(Ei+1)) = 16p2,

since End(Ei) and End(Ei+1) are maximal. Finally, by [24, Lemma 15.2.15], we have:

disc(End(Ei)) = [End(Ei) : Z+ `End(Ei)]
2 disc(Z+ `End(Ei))

and:

disc(End(Ei+1)) = [End(Ei+1) : Z+ ϕi End(Ei)“ϕi]2 disc(Z+ ϕi End(Ei)“ϕi),
so that:

[End(Ei+1) : Z+ ϕi End(Ei)“ϕi] = [End(Ei) : Z+ `End(Ei)] = `3.

Proposition 3.4. Assume that E0 admits a compact representation. Then, Ei admits an `-compact

representation for all i ∈ J0 ; nK and one can deduce End(Ei+1) from End(Ei) in polynomial time (in

log(p)) for all i ∈ J0 ; n− 1K. Hence, one can recover End(En) from End(E0) in polynomial time (in

log(p)).

Proof. Let i ∈ J0 ; nK and let α1, · · · , α4, β
(i)
1 , · · · , β(i)

4 be respectively a concise and useful Z-basis of

End(E0) and a Z-basis of End(Ei). Without loss of generality, we can assume that α1 = [1]E0 and

β
(i)
1 = [1]Ei . Let φi := ϕi−1 ◦ · · · ◦ ϕ0. Then, by Lemma 3.3, Z+ φi End(E0)“φi has index `3i in End(Ei)

so that:

β(i)
r =

1

`3i

4∑
s=1

cr,s ◦ φi ◦ αs“φi,
with cr,1, · · · , cr,4 ∈ Z for all r ∈ J1 ; 4K. Assuming, the cr,s have polynomial size (in log(p)), we get a

compact representation of End(Ei). Indeed, (β
(i)
1 , · · · , β(i)

4 ) is clearly concise so we only need to prove

the `-usefulness of this basis.

Let P ∈ E(k) with [k : Fp] polynomial and order prime to `. To evaluate β
(i)
r (P ), we first evaluate

[`3i]β
(i)
r (P ) =

∑4
s=1 cr,s ◦ φi ◦ αs“φi(P ). First, since ϕj has degree ` for all j ∈ J0 ; i− 1K, the ϕj and

ϕ̂j can be evaluated with O(`) operations over k (using Vélu’s formulas [11] for instance), so it can

be performed in polynomial time. Using efficient scalar multiplication techniques like double and add,

sliding windows, w-NAF or Yao’s method, the scalar multiplication by the cr,s can be performed in time

O(log(|cr,s|), which is polynomial. (α1, · · · , α4) being useful, [`3i]β
(i)
r (P ) can be evaluated in polynomial

time. Knowing the order m of P which is prime to `, we find an inverse u of `3i modulo m in time

O(min(log(m), log(`3i))) using extended euclidean algorithm. But log(m) is polynomial (in log(p)) by

Hasse-Weil’s bound and log(`3i) = O(log(p)) since p > |∆K |`2n by Proposition 1.33, so we may find u in

polynomial time and obtain [u][`3i]β
(i)
r (P ) = β

(i)
r (P ). Hence, the `-usefulness follows.

The fact that cr,s can be chosen in polynomial size remains to be proved. It will follow naturally from

the algorithm computing End(Ei+1) from End(Ei). Let R := End(Ei+1) and R′ := Z + ϕi End(Ei)“ϕi.
Let γ

(i)
r := ϕi ◦ β(i)

r ◦ “ϕi for all r ∈ J1 ; 4K. Then, (γ
(i)
1 , · · · , γ(i)

4 ) is a Z-basis of R′ and [R : R′] = `3 so

if we fix a Z-basis (β
(i+1)
1 , · · · , β(i+1)

4 ) of R, there is a matrix M ∈M4(Z) of determinant `3 such that:

t(γ
(i)
1 , · · · , γ(i)

4 ) = M t(β
(i+1)
1 , · · · , β(i+1)

4 )

Since γ
(i)
1 = 1 (by assumption, β

(i)
1 = 1) and we may assume without loss of generality, that β

(i+1)
1 = 1,

the first row of M is ( 1 0 0 0 ). Since R is determined by the basis (β
(i+1)
1 , · · · , β(i+1)

4 ) up to action

by GL4(Z), we can multiply M on the right by any matrix of GL4(Z). Hence, we can reduce M to its
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Hermite normal form (HNF), so that M is triangular inferior of the form:

M =

à
1 0 0 0

0 `n1 m2,3 m2,4

0 0 `n2 m3,4

0 0 0 `n3

í
,

with n1, n2, n3 ∈ N such that n1 + n2 + n3 = 3 and mr,s ∈ J0 ; `nr − 1K for all r ∈ {2, 3} and s ≥ r + 1.

Hence, there are at most: ∑
n1+n2+n3=3

`2n1+n2 ≤
Ç

5

2

å
`6 = 10`6

possible values for M , hence for 〈β(i+1)
1 , · · · , β(i+1)

4 〉 = R. One can test each value by expressing

β
(i+1)
r β

(i+1)
s in the basis (β

(i+1)
1 , · · · , β(i+1)

4 ) for all r, s ∈ J1 ; 4K, in order to check if the coefficients

are integers and test if disc(R) = 16p2. If yes, R is a maximal order and one can test if R = End(Ei+1)

in polynomial time by finding an elliptic curve E/Fp2 such that End(E) ' R using Algorithm 1, and

checking if j(E) = j(Ei+1) or j(Ei+1)p, since Ei+1 is characterized by its endomorphism ring up to

Galois action of the Frobenius by [24, Lemma 42.4.1]. Note that this algorithm runs under the as-

sumption that (β
(i+1)
1 , · · · , β(i+1)

4 ) is compact and `-useful. Expressing M−1, we see immediately that

(β
(i+1)
1 , · · · , β(i+1)

4 ) is compact and `-useful if (β
(i)
1 , · · · , β(i)

4 ) is, so we conclude by induction that it is the

case if we initialize at (β
(0)
1 , · · · , β(0)

4 ) = (α1, · · · , α4). Hence, we can compute End(Ei+1) from End(Ei)

in a bounded number of instances of a polynomial time algorithm. This completes the proof.

Now we explain how to solve the following problem, which will help us to test the different possible

values for Ei+1.

Problem 3.5. Given E0 andR0 ⊆ Bp,∞ an `-compact representation of End(E0) and a concise1 maximal

order R, find E/Fp2 such that End(E) ' R.

Actually, this problem can be solved in polynomial time using the following algorithm. This algorithm

is based on the Deuring correspondence between integral left R0-ideals and isogenies with domain E0

(see Appendix A.4), on an algorithm explicitly computing this correspondence (see Appendix B.3) and

on a quaternion arithmetic algorithm due to Kohel, Lauter, Petit and Tignol [27] (see Appendix B.2).

Algorithm 1: Algorithm to solve Problem 3.5.

Data: E0 an elliptic curve, R0, an `-compact representation of End(E0) and R, a concise

maximal order.

Result: E/Fp2 such that End(E) ' R.

1 Compute a connecting ideal I between R0 and R (take I := R0R and multiply it by an integer if

necessary to ensure I ⊆ R);

2 Find an equivalent ideal J ∼ I of powersmooth norm using KLPT (see Appendix B.2, Algorithm

3);

3 Compute the isogeny φ : E0 −→ E of kernel E0[J ] using effective Deuring correspondence (see

Appendix B.3, Algorithm 4);

4 Return E;

3.1.2 Step 2: find a connecting ideal between End(En) and End(Fn)

Knowing `-concise representations R and R′ (as maximal order of Bp,∞) of End(En) and End(Fn)

respectively, we obtain an `-concise representation of their product I := RR′ which is a connecting

1Given by a Z-basis with coefficients in polynomial size (in log(p)) in terms of 1, i, j, k.
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left-R-ideal, meaning that:

OL(I) := {α ∈ Bp,∞ | α · I ⊆ I} = R and OR(I) = {α ∈ Bp,∞ | I · α ⊆ I} = R′.

To make I integral (i.e. such that I ⊆ R) we may multiply this basis by an integer of size O(log(p)), so

that the basis remains `-concise. We compute a Z-basis of I in polynomial time in log(p) by computing

the hermite normal form of the matrix of a generating set of I in a basis of R.

3.1.3 Step 3: find an equivalent ideal J to I that is generated by a prime

ideal N of On

This paragraph is a bit technical and makes intensive use of the quaternion arithmetic ideas of KLPT

(see Appendix B.2). The reader could either skip it or read Appendix B.2 before.

As in step a of KLPT (Algorithm 3), we can find δ ∈ I of norm N nrd(I) with N 6= p prime and

N = O(
√
p log2(p)) (in general), in time O(log(p)). By Lemma B.1, J := Iδ/nrd(I) ∼ I is integral and

nrd(J) = N .

We now prove that J is generated by a prime ideal of On lying above N . We may assume that

R ' End(En) is special with respect to R = On, in the sense of the following definition:

Definition 3.6. We say that a maximal order R ⊆ Bp,∞ is special if j ∈ R (with j2 = −p) and there

exists a subring of rank 2, R ⊂ R, such that R⊥ ⊆ Rj, where R⊥ is the orthogonal of R for the scalar

product given by:

(α, β) ∈ B2
p,∞ 7−→ (α|β) := nrd(α+ β)− nrd(α)− nrd(β) = Tr(αβ).

Indeed, we usually take for E0 the elliptic curve of equation y2 = x3 +x with p ≡ 3 [4], K = Q(i) with

i2 = −1 and OK = Z[i] ⊆ End(E0) ' 〈1, j, i+j2 , 1+k
2 〉 (see Example B.3). Since OK ⊆ (jOK)⊥, End(E0)

is special for R = OK . The inclusion Z + `n End(E0) ↪→ End(En) ' R ensures that R is special with

R = Z+ `nOK = On.

Let S be the suborder On ⊕ jOn in R. Then, J ∩ S = J ∩ On ⊕ (J ∩ jOn) is a left S-ideal and we

have a natural injective ring homomorphism S/J ∩ S ↪→ R/J . It follows that [S : J ∩ S]|[R : J ] = N2.

Besides, by orthogonality of On and jOn, we have a group homomorphism:

S/J ∩ S ' On/J ∩ On × jOn/J ∩ jOn,

so that [S : J ∩ S] = [On : J ∩ On][jOn : J ∩ jOn]. We obviously have, [On : J ∩ On] > 1, otherwise,

1 ∈ J so J = R and nrd(J) = 1 6= N , so [On : J ∩On] = N or N2. In the latter case, [jOn : J ∩ jOn] = 1

so j ∈ J . But nrd(j) = p and N - p. Contradiction. So [On : J ∩On] = N and J ∩On is a prime ideal of

norm N in On.

Hence, according to the following lemma, we can find an element α ∈ J∩On such that gcd(nrd(α), N2) =

N in polynomial time in log(p). It follows that J = RN +Rα = R · J ∩ On as in step b of KLPT.

Lemma 3.7. Let N be an ideal of On of prime norm N . Then, there exists α ∈ N such that gcd(N(α), N2) =

N and N = 〈N,α〉. One can find α in time O(log4(N)).

Proof. Let θ ∈ K be a generator of OK , t := Tr(θ) and s := N(θ). Since N has norm N , N is not inert in

K so there is a root λ ∈ Z of the reduction modulo N of the minimal polynomial of θ: Πθ := X2− tX+s

such that N = 〈N, `n(θ − λ)〉, so we may set α := `n(θ − λ). Then, we have:

N(α) = `2n(λ2 − tλ+ s) = `2nΠθ(λ) ≡ 0 [N ].
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Since ` - N , if N(α) ≡ 0 [N2], then Πθ(λ) ≡ 0 [N2] and:

N(α+N) = `2n((λ+N)2 − t(λ+N) + s) = `2n(Πθ(λ) +NΠ′θ(λ) +N2) ≡ `2nNΠ′θ(λ) [N2],

but Π′θ(λ) 6= 0 [N ], since N does not divide ∆K (recall that N = Ω(
√
p) is big and that ∆K is small).

Hence, gcd(N(α+N), N2) = N .

To find α, the dominant operation is finding the roots of Πθ modulo N . This can be done with

Tonelli-Shanks [28, Algorithm 1.5.1] algorithm, computing a square root of ∆K modulo N , in time

O(log4(N)).

3.1.4 Step 4: express [N] as a product of the [qj] with small exponents

In order to be able to compute the action of [N] on descending `-isogeny chains, we need to express this

ideal class as a product of the [qj ] in Cl(On):

[N] =
t∏

j=1

[qj ]
ej (?),

with exponents e1, · · · , et ∈ Z as small as possible. Indeed, a priori these exponents have order of

magnitude |Cl(On)| ' `n, making the action impossible to compute as it would require to apply the

ladder computation of Paragraph 1.5.2 exponentially many times. For that reason, after expressing [N]

as a product, a reduction of the exponents modulo the relations lattice of the [qj ] needs to be performed.

Expressing [N] as a product of the [qj ]

The idea here is to compute a basis of Cl(On) in terms of the [qj ], (in the sense of Definition B.7) and

to compute the discrete logarithm of [N] in this basis (in the sense of Definition B.8). Actually, by the

following lemma, the group basis will consist in one or two elements.

Lemma 3.8. One of the following results hold:

(i) For all n ≥ 1, Cl(On) is cyclic.

(ii) For all n ≥ 2, Cl(On) ' (Z/`Z)× (Z/hn−1Z) with:

hn−1 := |Cl(On−1)| = `n−2

[O×K : O×1 ]

Å
`−
Å

∆K

`

ãã
,

where ∆K := disc(K).

The last case only happens when ` = 2 or when ` ≥ 3 ramifies in K (this condition is necessary but not

sufficient).

Proof. See Appendix A.5.

Since |Cl(On)| is smooth (with a factor `n−1 and all other prime factors ≤ `+ 1), we get that discrete

logarithms can be computed in polynomial time in n by Pohlig-Hellman methods. As a consequence, one

can compute a basis of |Cl(On)| in terms of the [qj ] in time O(tn2) (by Lemma B.17) and the discrete

logarithm of [N] in such a basis can be computed in time O(n2) using Algorithm 7. This way, we obtain

an expression of [N] as (?) with big exponents ej .
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Reducing the exponents modulo the relations lattice of the [qj ]

We want to make the vector e := (e1, · · · , et) as short as possible, which can be done by computing the

closest vector c to e in the lattice:

L :=

{
(f1, · · · , ft) ∈ Zt

∣∣∣∣∣∣
t∏

j=1

[qj ]
fj = [1]

}
.

Knowing a basis of Cl(On) and an algorithm to efficiently compute discrete logarithms, a Z-basis

of this lattice could be computed in polynomial time in t and n (actually, in time O(t3 + tn2)) using

Algorithm 9.

An approximation of the closest vector c is sufficient, because the search for such a vector may be

very costly. There is a tradeoff between the norm of the vector e′ := e − c and the the cost of this

approximation. Computing the action of [N] =
∏t
j=1[qj ]

e′j has time complexity:

Θ

(
n
∑
j=1

P (qj , n)|e′j |

)
,

where P is a polynomial. Since:

‖e′‖2 ≤
∑
j=1

P (qj , n)|e′j | ≤ ‖e′‖2

Ã
t∑

j=1

P (qj , n)2,

the time complexity of the action of [N] is ‖e′‖2, up to a polynomial factor in n, t and the qj . Hence, we

can optimize e′ in `2 norm. There is a trade-off between the tightness of our approximation to optimize

the performance of the action of [N] and the time complexity of finding a close vector.

Theorem 3.9. [29, Theorem 3.3] Let Λ ⊆ Zd be a lattice of rank d, B := (b1, · · · , bd), a basis of Λ, a

target x ∈ Rd and k ∈ N∗ such that d > 2k. Under some heuristic assumptions, there exists an algorithm

finding c ∈ Λ such that:

‖x− c‖2 = O
Ä
GH(k)

d
2k Covol(Λ)

1
d

ä
,

where GH is the Gaussian heuristic function given by:

GH(k) :=
Γ
(
k
2 + 1

) 1
k

√
π

.

This algorithm runs in time:

(TCV P (k) + TSV P (k))P

Å
k, d, log ‖x‖2, log max

1≤i≤d
‖bi‖2

ã
,

where TCV P (k) and TSV P (k) are the time complexities of oracles for CVP and SVP in dimension k for

the norm `2 respectively and P is a polynomial.

The best known algorithm for CVP (with preprocessing) is due to [30] and runs in time TCV P (k) =

2c1k+o(k) with c1 ≈ 0.264. The best known algorithm for SVP is due to [31] and runs in time TSV P (k) =(
3
2

)k/2+o(k)
= 2c2k+o(k) with c2 ≈ 0.292.

Corollary 3.10. Applying the algorithm of Theorem 3.9, one can recover an ideal a ⊆ On which is a

product of the qj with small exponents such that (Fi)0≤i≤n = a · (Ei)0≤i≤n in time:

2c2k+o(k)P (k, n, t, max
1≤j≤t

qj),
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where P is a polynomial and k ∈ J1 ; dt/2e − 1K, a parameter to be chosen. For this value of k, one can

compute the action of [a] on any chain in time:

GH(k)
t
2k `

n
t Q(n, t, max

1≤j≤t
qj),

where Q is a polynomial.

Proof. The corollary is a restatement of what we have seen before. We simply apply the algorithm of

Theorem 3.9 to Λ = L and get the desired complexity, since Covol(L) = h(On). Indeed, since the [qj ]

generate Cl(On), we have an exact sequence:

{0} −→ L ↪→ Zt
ϕ−→ Cl(On) −→ {0},

where L ↪→ Zt is the natural inclusion and ϕ : (e1, · · · , et) ∈ Zt 7−→
∏t
j=1[qj ]

ej ∈ Cl(On). It follows

that:

Covol(L) = |Zt/L| = h(On).

This attack is still subexponential, but much more damaging to the cryptosystem. To ensure a security

level of λ = 128 bits, we need t ≥ 16064, which is utterly unrealistic.

For smaller and more realistic parameters, like those Colò and Kohel proposed in [4, Section 6]

(t = 74 for n = 256, ` = 2 and r = 5), the closest vector approximation can be computed with polynomial

algorithms such as Babai’s nearest plane algorithm [32] running in O(t6) because the outputted exponents

will have reasonable size.

3.2 A second attack using the class group action only

We recall here the problem we have to solve: given a chain (Ei, ιi)0≤i≤n and a chain (Fi, ι
′
i)0≤i≤n =

a · (Ei, ιi)0≤i≤n with a secret ideal class [a] ∈ Cl(On), we want to recover [a]. We have seen that this

could be done by recovering the structure of the endomorphism rings End(Ei) and End(Fi). However,

this might not be necessary and we present here a simpler approach to this problem.

For i ∈ J0 ; n− 1K, suppose that we know an ideal of ai =
∏t
j=1 q

ei,j
j of OK , such that:

ai · (Ek, ιk)0≤k≤i = (Fk, ι
′
k)0≤k≤i.

Then [a∩Oi] = [ai∩Oi] in Cl(Oi) and ai∩Oi is determined up to multiplication by principal ideals of Oi,
so that ai is determined up to multiplication by elements of Oi. We look for an ideal ai+1 =

∏t
j=1 q

ei+1,j

j

of OK such that:

ai+1 · (Ek, ιk)0≤k≤i+1 = (Fk, ι
′
k)0≤k≤i+1.

Then, [ai+1∩Oi] = [a∩Oi] = [ai∩Oi] in Cl(Oi) i.e. ai+1∩Oi ≡ ai∩Oi mod P (Oi). Hence, to determine

ai+1, one only has to determine an ideal b =
∏t
j=1 q

dj
j such that b ∩ Oi is principal and:

[ai · b ∩ Oi+1] · Ei+1 = Fi+1 (?).

Then, we can set ai+1 := ai · b, so that ei+1,j := ei,j + dj for all j ∈ J1 ; tK. Actually, ai+1 ∩ Oi+1 is

determined modulo a principal ideal of Oi+1 and b∩Oi+1 as well. As a consequence, [b∩Oi+1] is in the

kernel of the surjective group homomorphism:

[c] ∈ Cl(Oi+1) −� [cOi] ∈ Cl(Oi)
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whose cardinality is ` for i ≥ 1 and 1
[O×
K

:O×1 ]

(
`−

(
∆K

`

))
for i = 0, so we only have to test a limited

number of values for b until (?) is satisfied.

However, we have to make sure that all the values of b to be tested can be easily expressed in terms of

the qj and that the exponents ei+1,j of ai·b are short enough to make the computation of [ai·b∩Oi+1]·Ei+1

practical.

3.2.1 Expressing ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj

By Lemma 3.8, we know that Cl(On) is either cyclic or of the form Cl(On) ' (Z/`Z)× (Z/hn−1Z) with

hn−1 := |Cl(On−1)|.
We describe how to proceed when Cl(On) is cyclic. If we assume that the qj generate Cl(On), we can

compute an OK-ideal g such that [g∩On] generates Cl(On), as one of the qj or a as product of some qj .

By the surjection Cl(Oi+1) −� Cl(Oi), we get that [g ∩ Oi] generates Cl(Oi) for all i ∈ J0 ; n− 1K and

that:

ker(Cl(Oi+1) −� Cl(Oi)) = 〈[g ∩ Oi+1]hi〉,

with hi := |Cl(Oi)|.
Now, we assume that Cl(On) ' (Z/`Z)× (Z/hn−1Z). In that case, as previously, we obtain easily an

ideal g expressed as one of the qj or as a product of some qj such that [g ∩On] has order hn−1. We also

obtain that [g ∩ Oi] has order hi−1 for all i ∈ J2 ; nK (for instance by Lemma A.14.(iv)). As previously,

it follows that:

ker(Cl(Oi+1) −� Cl(Oi)) = 〈[g ∩ Oi+1]hi−1〉

for all i ∈ J2 ; n− 1K. For i = 0, 1, the kernel can be very easily computed because the class groups are

small.

Either way, we can easily express every ideal b such that b∩Oi+1 lies in the above kernel in terms of

the qj .

3.2.2 Reducing the exponents of ai · b

Once b is expressed in terms of the qj , i.e. when the dj are known, we still have to make sure that

the exponents ei+1,j = ei,j + dj of ai · b are small. Actually, ei+1 := (ei+1,j)1≤j≤t is determined up to

translation by an element of the lattice:

Li+1 :=

{
(e1, · · · , et) ∈ Zt

∣∣∣∣∣∣
t∏

j=1

[qj ]
ej = [1] in Cl(Oi+1)

}
.

Hence, we can apply the method of Paragraph 3.1.4 to find f ∈ Li+1 relatively close to ei+1 and compute

the action of [b · ai] =
∏t
j=1[qj ]

e′i+1,j with e′i+1 := ei+1 − f .

Using Algorithm 9, one can find a basis of Li+1 in time O(t3 + t(i+ 1)2). Using Babai’s nearest plane

algorithm [32], one can find f ∈ Li+1 close to ei+1 in time O(t6). Then, we can compute the action of

[b · ai] =
∏t
j=1[qj ]

e′i+1,j with e′i+1 := ei+1 − f .

Theorem 3.11. One can recover the secret ideal class a in time:

O
(
n3t2 + n4 + t6 + n`TCL

)
,

where TCL is the time complexity of the computation of the class group action on a given elliptic curve

by the method of Paragraph 1.5.2 when exponents are outputted by Babai’s nearest plane algorithm and

where the O constant depends only on `.
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3.2.3 Implementation

We implemented the attack described above with SageMath [6]. The source code can be found in [13],

more specifically in the files OSIDH_protocol.py and OSIDH_attack.py.

We tested our implementation with toy parameters: n = 28, t = 10, ` = 2, r = 3 (and K = Q(i)).

These parameters have been chosen so that (2r + 1)t ' h(On) ' `n to ensure the key space:

{
t∏

j=1

[qj ]
ej

∣∣∣∣∣∣e1, · · · , et ∈ J−r ; rK

}

covers the whole class group Cl(On).

Given two chains (Ei, ιi)0≤i≤n and (Fi, ι
′
i)0≤i≤n = a·(Ei, ιi)0≤i≤n with a secret ideal class [a] ∈ Cl(On),

our attack found [a] in 90 s.2 The drawback of our performance is not the attack itself but rather the

class group action on the chains. Indeed, computing with modular polynomials is very costly. For that

reason, the protocol runs very slowly: with our parameters, the naive Diffie Hellman key exchange runs

in 37 s and the strong version of OSIDH runs in 83 s, which is almost the running time of the attack.

Testing the attack with realistic parameters like those Colò and Kohel proposed (t = 74 for n = 256,

` = 2 and r = 5) would require us to manage modular polynomials much more efficiently of to find an

alternative method to compute the class group action.

3.3 Onuki’s attack

As we saw in Paragraph 3.1, the knowledge of the chains (Ei, ιi)0≤i≤n and (EA,i, ιA,i)0≤i≤n = a ·
(Ei, ιi)0≤i≤n, gives away enough information to recover the secret ideal class [a] ∈ Cl(On). We present

an attack due to Onuki [12, § 6.3] recovering the chain of `-isogenies (ϕi : Ei −→ Ei+1)0≤i≤n−1 given E0

and En together with the chains:

q−rj · En −→ · · · −→ En −→ · · · −→ qrj · En

for all j ∈ J1 ; nK. There is a variant of this attack based on the shortest vector problem (SVP) in a

lattice of dimension t (see Paragraph 3.4).

Assume that the attacker knows an endomorphism ιn(β) for a known value β ∈ On \ On+1 that we

write β := a+ b`nθ, where θ is a generator of OK and a, b ∈ Z, with b∧ ` = 1. Since ιn(a) = [a] is easy to

compute, we can assume that a = 0 i.e. that β = b`nθ. We assume that ιn(β) can be efficiently evaluated

on `-torsion points. Then the attacker can compute the subgroup G := ker(ιn(β)) ∩En[`] in polynomial

time in log(p).

Lemma 3.12. G = ker(ϕ̂n−1).

Proof. We have:

ιn(β) = ιn(b`nθ) = [`]ιn(b`n−1θ) = ϕn−1ιn−1(b`n−1θ)ϕ̂n−1

and b`n−1θ ∈ On−1, so that ιn−1(b`n−1θ) ∈ End(En−1), and consequently, ker(ϕ̂n−1) ⊆ ker(ιn(β)). Since

deg(ϕn−1) = `, we have also ker(ϕ̂n−1) ⊆ En[`] so that ker(ϕ̂n−1) ⊆ G. So G is either cyclic of order

` and equal to ker(ϕ̂n−1) or of order `2 and equal to the whole `-torsion subgroup En[`]. If the latter

holds, ιn(β) factors through [`] by [15, Corollary III.4.11] and β/` = b`n−1θ ∈ On, so `|b. Contradiction.

Hence, G = ker(ϕ̂n−1).

2The running times provided here were extracted from a single test so they are subject to some statistical variation.
However, all other tests performed were consistent with these results. Obviously, the reproducibility of these results depend
on the machine used to run the tests. Here, we used a MacBook Pro Retina 2015 with a 2.5 GHz quad-core processor and
16 GB RAM.
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Hence, we can compute ϕ̂n−1 using Vélu’s formulas in O(`) operations over the field of definition

of En[`]. With this information, we can recover ϕn−1 easily, by evaluating ϕ̂n−1 on En−1[`], since

ker(ϕn−1) = ϕ̂n−1(En−1[`]), and using Vélu’s formulas again.

With the knowledge of ϕ̂n−1 : En −→ En−1, along with the horizontal chain:

[qj ]
−r · En −→ · · · −→ En −→ · · · −→ [qj ]

r · En

for all j ∈ J1 ; tK we can compute the chain:

[qj ]
−r · En−1 −→ · · · −→ En−1 −→ · · · −→ [qj ]

r · En−1

for all j ∈ J1 ; tK, by the methods of Paragraph 1.5.2.

We conclude that the attacker can compute the chain of isogenies (ϕi : Ei −→ Ei+1)0≤i≤n−1, if at

each index i ∈ J1 ; nK, if they have access to an oracle providing ιi(βi) for βi ∈ Oi \ Oi+1, when Ei is

given. Now, we present such an oracle (for En), due to Onuki. An alternate oracle relying on SVP will

be presented in Paragraph 3.4.

First, we look for β ∈ On\On+1 such that βOn = a·b, with a big factor a :=
∏t
j=1 q

ej
j whose exponents

e1, · · · , et lye in J−r ; rK and b ⊆ On, any ideal. In practice, we test different values of β := a+ bθ with

a and b sampled uniformly at random in J−m ; mK and J−m ; mK \ `Z respectively, for m big enough.

We stop when N(β) has a big enough divisor Q :=
∏t
j=1 q

ej
j with e1, · · · , et ∈ J−r ; rK, let’s say Q ≥ x,

where the threshold x is to be chosen. Then, we compute the qj-adic valuation of β for all j ∈ J1 ; tK
(using [33, Algorithm 2.3.13] for instance) to express the ideal a.

With the knowledge of the chain:

[qj ]
−r · En −→ · · · −→ En −→ · · · −→ [qj ]

r · En

for all j ∈ J1 ; rK, using the techniques of Paragraph 2.2, it is easy to compute the isogeny ϕa : En −→
[a] · En of kernel En[a].

It remains to compute the isogeny ϕb : [a] ·En −→ [a · b] ·En = En of kernel [a] ·En[b]. We know that

deg(ϕb) = N(b) = N(β)/N(a), so we can compute deg(ϕb) and factor it into primes:

deg(ϕb) =
s∏

k=1

`fkk

with `1, · · · , `s distinct prime numbers and f1, · · · , fs ∈ N∗ using general number field Seive in subexpo-

nential time:

exp
Ä
O
Ä
log(N(b))

1
3 log log(N(b))

2
3

ää
and use a meet-in-the-middle technique to recover ϕb as follows. We divide our search in two approxi-

mately equal parts, by exhaustive search among isogenies φ1 : [a] ·En −→ E of degree deg(φ1) =
∏s
k=1 `

gk
k

and and φ2 : En −→ E′ of degree deg(φ2) =
∏s
k=1 `

hk
k , where the exponents are chosen, so that

hk+gk = fk for all k ∈ J1 ; sK and deg(φ1) ' deg(φ2) '
√

deg(ϕb). We stop our exhaustive search when

we find a collision E = E′ and return ϕb = φ̂2 ◦φ1. φ1 (respectively φ2) is represented as chains of gk (re-

spectively gk) `k-isogenies for k ∈ J1 ; sK. Hence, there are
∏s
k=1(`k + 1)gk (respectively

∏s
k=1(`k + 1)hk)

possible isogenies (counting the number of possible kernels of each isogeny of the chain). Hence, the

exhaustive search has complexity:

Ω

(
s∏

k=1

(`k + 1)gk +
s∏

k=1

(`k + 1)hk

)
= Ω(

»
deg(ϕb)) = Ω

(√
N(β)∏t
j=1 q

ej
j

)
.

Remark 3.13. Note that we have no theoretical guarantee that we actually find the isogeny ϕb :
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[a] · En −→ En with this method. Make sure of it would require knowledge of the K-orientation of the

domain or codomain, which are hidden.

Here, we estimate the time complexity of Onuki’s attack in order to provide sharper security bounds.

Indeed, Onuki’s estimates were very pessimistic.

Lemma 3.14. We make the heuristic assumption that N(β) has the same arithmetic properties as a

uniform variable in JNmin ; NmaxK when β := a + bθ with (a, b) sampled uniformly in J−m ; mK ×
J−m ; mK \ `Z. Then, the average time complexity of Onuki’s attack [12, § 6.3] is:

C(x) ≥ x

2(r + 1)t
+

κN
3
2
min

x
3
2 (r + 1)t

,

where κ := 1
4
√
q1

Ä
1− 1

q1

ä
and x is the threshold for the value of the norm of the ideal a =

∏t
j=1 q

ej
j

dividing β. The optimal value for the threshold is xm := (3κ)
2
5N

3
5
min(r + 1)−

2t
5 and the optimal average

time complexity is:

C(xm) = Ω

(
N

3
5
min

(r + 1)
2t
5

)
.

Proof. Under the heuristic assumption we made, we can assume that N := N(β) is a uniform random

variable in the range JNmin ; NmaxK. We define the random variable:

Q := Q(N) =
t∏

j=1

q
min(r,vqj (N))

j .

The cost of the exhaustive search for a suitable β is then:

C1(x) =
1

P(Q(N) ≥ x)
=
Nmax −Nmin
|S(x)|

,

with:

S(x) :=

{
y ∈ JNmin ; NmaxK

∣∣∣∣∣∣
t∏

j=1

q
min(r,vqj (y))

j ≥ x

}

=
⋃

(e1,··· ,et)∈J0 ; rKt

x≤
∏t

j=1
q
ej
j
≤Nmax

{
k

t∏
j=1

q
ej
j

∣∣∣∣∣∣ k ∈
t¢

Nmin∏t
j=1 q

ej
j

•
;

ú
Nmax∏t
j=1 q

ej
j

ü|}
so that:

|S(x)| ≤
∑

(e1,··· ,et)∈J0 ; rKt

x≤
∏t

j=1
q
ej
j
≤Nmax

Çú
Nmax∏t
j=1 q

ej
j

ü
−
¢

Nmin∏t
j=1 q

ej
j

•å
≤

∑
(e1,··· ,et)∈J0 ; rKt

x≤
∏t

j=1
q
ej
j
≤Nmax

Ç
Nmax −Nmin∏t

j=1 q
ej
j

+ 1

å
≤
Å
Nmax −Nmin

x
+ 1

ã
|{(e1, · · · , et) ∈ J0 ; rKt | x ≤

t∏
j=1

q
ej
j ≤ Nmax}|

≤
Å
Nmax −Nmin

x
+ 1

ã
(r + 1)t ≤ 2(Nmax −Nmin)

(r + 1)t

x
(1)

under the fairly reasonable assumption that x ≤ Nmax − Nmin (this is plausible since x ≤ Nmax and
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Nmax ' m2Nmin with m� 1). It follows that the search for β costs:

C1(x) ≥ x

2(r + 1)t
(2).

The average cost of the meet-in-the-middle procedure to find the isogeny associated to b is:

C2(x) ≥ E
ñ 

N

Q(N)
| Q(N) ≥ x

ô
≥
√
AP(N ≥ AQ(N)|Q(N) ≥ x),

where we used Markov’s inequality with A > 0 to be chosen. Hence:

C2(x) ≥
√
A
P({N ≥ AQ(N)} ∩ {Q(N) ≥ x})

P(Q(N) ≥ x)
=

√
A|T (A)|
|S(x)|

(3),

with:

T (A) :=

{
k

t∏
j=1

q
ej
j

∣∣∣∣∣∣ Nmax ≥
t∏

j=1

q
ej
j ≥ x and k ∈

t

max

Ç
dAe,

¢
Nmin∏t
j=1 q

ej
j

•å
;

ú
Nmax∏t
j=1 q

ej
j

ü|}
.

We take A := Nmax/(q1x), so that for all e1, · · · , et ∈ J0 ; rK such that Nmax ≥
∏t
j=1 q

ej
j ≥ x, we have:

Nmin∏t
j=1 q

ej
j

≤ Nmin
x

<
Nmax
qtx

= A,

since Nmax/Nmin ' m2 � qt. Without loss of generality, we can assume that x is a product of the qj .

Hence:

|T (A)| ≥
õ
Nmax
x

û
−
°
Nmax
q1x

§
≥ Nmax

x
− Nmax

q1x
− 1 ≥ Nmax

2x

Å
1− 1

q1

ã
,

under the fair assumption that x ≤ Nmax
2

Ä
1− 1

q1

ä
. This inequality combined with (1) and (3) leads to:

C2(x) ≥ (Nmax)
3
2

4
√
q1x(r + 1)t(Nmax −Nmin)

Å
1− 1

q1

ã
.

But we know that x ≤ Nmax −Nmin. It follows that:

C2(x) ≥ (Nmin + x)
3
2

4
√
q1(r + 1)tx

3
2

Å
1− 1

q1

ã
≥ N

3
2
min

4
√
q1(r + 1)tx

3
2

Å
1− 1

q1

ã
(4).

Combining (2) and (4), we find that Onuki’s attack has average complexity:

C(x) ≥ C1(x) + C2(x) ≥ x

2(r + 1)t
+

κN
3
2
min

x
3
2 (r + 1)t

,

with κ := 1
4
√
q1

Ä
1− 1

q1

ä
. The optimal value for x is obtained by differenciating of the function defined

over R∗+: x 7−→ x
2(r+1)t +

κN
3
2
min

x
3
2 (r+1)t

.

Since, we have Nmin = Ω(`2n), to ensure a level of security of λ bits, one has to choose the parameters

so that:
`

6n
5

(r + 1)
2t
5

≥ 2λ,

i.e. :

n ≥ 5 log(2)

6 log(`)
λ+

t

3
log(r + 1).

Example 3.15. For λ = 128 bits, ` = 2, r = 3 and t = 100 (parameters proposed by Onuki), we get
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n ≥ 153. This is much less than the first estimate of Onuki (see [12, § 6.3]) for the same parameters

(n = 1428) and even less than Colò and Kohel’s choice in [4, Section 6] (n = 256).

However, this attack can be dramatically improved if we replace the exhaustive search of endomor-

phisms by a reduction of the relations lattice. This will lead to a significant revision of the security

parameters.

3.4 A variant of Onuki’s attack based on lattice reduction

This is a variant of Onuki’s attack : given E0 and En and the horizontal chains:

q−rj · En −→ · · · −→ En −→ · · · −→ qrj · En (j ∈ J1 ; tK),

we recover the whole chain (Ei, ιi)0≤i≤n with an oracle returning an endomorphism ιi(βi) with βi ∈
Oi \ Oi+1 when given Ei for i ∈ J1 ; nK. However, the oracle is different here. Instead of searching for

β ∈ On \ On+1 (for i = n) with smoothness conditions on its norm coupled with a meet-in-the-middle

attack, we directly look for β ∈ On \On+1 as a product of the qj with exponents in J−2r ; 2rK by solving

the equation:
t∏

j=1

[qj ]
ej = [1]

in Cl(On), with e1, · · · , et ∈ J−2r ; 2rK non-trivial. Then, we write ej := e′j + e′′j with e′j , e
′′
j ∈ J−r ; rK

for all j ∈ J1 ; tK and compute the isogenies:

ϕ : En −→
t∏

j=1

[qj ]
e′j · En and ψ : En −→

t∏
j=1

[qj ]
−e′′j · En =

t∏
j=1

[qj ]
e′j · En

and finally compute ιn(β) = ψ̂ ◦ ϕ with with βOK =
∏t
j=1 q

ej
j .

As we saw in Paragraph 3.1.4, we can find a basis of the lattice:

L :=

{
(e1, · · · , et) ∈ Zt

∣∣∣∣∣∣
t∏

j=1

[qj ]
ej = [1]

}

in polynomial time in n and t. Our problem reduces to finding a short vector in L for the norm `∞,

hoping that this vector has norm ≤ 2r to make sure that we can compute ιn(β) by the method presented

above. Hence, an estimation of the infinity norm of the shortest vector in L is necessary.

3.4.1 Estimating the first minimum of L in infinity norm

We want to estimate, at least statistically the first minimum of L for the norm `∞, depending on the

parameters:

λ
(∞)
1 (L) := min

v∈L\{0}
‖v‖∞.

We provide a first estimate here:

Lemma 3.16. We have λ
(∞)
1 (L) ≤ h(On)

1
t .

Proof. As in Corollary 3.10, we get that Covol(L) ≤ h(On).

The conclusion follows from the classical result λ
(∞)
1 (L) ≤ Covol(L)

1
t , which is a corollary of Minkowski’s

convex body Theorem [18, Theorem V.3]. We recall its proof here. We consider the ball for `∞ norm:

B∞(0, r) := {v ∈ Rt | ‖v‖∞ ≤ r},
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where r := Covol(L)
1
t , whose volume is 2t Covol(L) and which is centrally-symmetric. Then, by Minkowski’s

convex body theorem, we have a non-zero lattice point in B∞(0, r), so that λ
(∞)
1 (L) ≤ r = Covol(L)

1
t .

This completes the proof.

Remark 3.17. Since h(On) = `n−1

[O×
K

:O×n ]

(
`−

(
∆K

`

))
' `n by [19, Theorem 7.24], we conclude that

λ
(∞)
1 (L) = O(`

n
t ). Hence, we have to make sure that 2r < `

n
t to have a chance that 2r < λ

(∞)
1 (L). Of

course, n has to be sufficiently larger than t to make this inequality possible.

However, we do not know how thight the estimate λ
(∞)
1 (L) ≤ h(On)

1
t is, and therefore if the choice

of parameters 2r < O(`
n
t ) is sufficient. Assuming that the [qj ] generate Cl(On), we have Covol(L) =

h(On)
1
t , and Covol(L) is close to this bound if the [qj ] generate a big enough subgroup. Heuristically, it

makes sense to assume that λ
(∞)
1 (L) is relatively close to Covol(L)

1
t in general, namely that λ

(∞)
1 (L) =

Θ(Covol(L)
1
t ), as the following asymptotical result indicates.

Let N,n ∈ N∗ and IN,n be the set of full-rank sublattices of Zn of covolume N .

Lemma 3.18. (i) IN,n is finite.

(ii) Let Λ be a random variable following the uniform distribution on IN,n. Then, for all ε > 0, there

exists n0, N0 ∈ N∗ such that for all n ≥ n0 and N ≥ N0:

P

ñ∣∣∣∣∣λ(∞)
1 (Λ)− N

1
n

2

∣∣∣∣∣ ≤ log log(n)

n

N
1
n

2

ô
≥ 1− ε.

Proof. (i) Since a lattice of IN,n is determined by an integral basis of determinant ±N , up to multipli-

cation on the right by a matrix of SLn(Z), we get that IN,n is in bijection with the quotient of:

SN := {M ∈Mn(Z) | det(M) = ±N}

by the group action of SLn(Z) by multiplication on the right. We prove that this quotient SN/SLn(Z)

is finite. Taking the column echelon reduced matrix, we get that modulo SLn(Z) every M ∈ SN is in

the class of a HNF matrix: à
d1 a1,2 · · · a1,n

0 d2 · · · a2,n

...
. . .

...

0 0 · · · dn

í
,

with d1, · · · , dn ∈ N∗ such that
∏n
i=1 di = N and ai,i+1, · · · , ai,n ∈ J0 ; di − 1K for all i ∈ J1 ; nK. There

are only finitely many such matrices. (i) follows.

(ii) This result has already been proved in [34, Theorem 11] for the norm `2. The reasoning would

be exactly the same here. We only have to replace the function h(n) = 1

Vol(B2(0,1))
1
n

by the constant

1

Vol(B∞(0,1))
1
n

= 1
2 in the inequality.

Remark 3.19. As always,we assume that Cl(On) is generated by the [qj ]. Assuming that L behaves

like a random lattice with uniform distribution in Ih(On),t, we get that:

λ
(∞)
1 (L) ≤

Å
1 +

log log(t)

t

ã
h(On)

1
t

2
.

To ensure that the key space covers Cl(On), we require the surjectivity of the map:

f : (e1, · · · , et) ∈ J−r ; rKt 7−→
t∏

j=1

[qj ]
ej ∈ Cl(On).
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It follows that h(On) ≤ (2r + 1)t, so that:

2r ≥ h(On)
1
t − 1 >

Å
1 +

log log(t)

t

ã
h(On)

1
t

2
≥ λ(∞)

1 (L)

for h(On) big enough, so the SVP attack is possible.

Example 3.20. For instance, with the parameters of [4, p. 28]: ` = 2, r = 5, t = 74 and n = 256, we

get the upper bound for λ
(∞)
1 (L) is: Å

1 +
log log(t)

t

ã
`
n
t

2
≈ 5.61,

so that λ
(∞)
1 (L) ≤ 5 < 2r = 10 and the attack is indeed possible.

3.4.2 Countermeasures to our attack

There are two ways of countering our attack:

1. Increase t sufficiently to ensure that finding a short vector e ∈ L such that ‖e‖∞ ≤ 2r is computa-

tionally very hard.

2. Make any SVP attack impossible by choosing our parameters so that λ
(∞)
1 (L) > 2r.

The safest way to find a vector e ∈ L such that ‖e‖∞ ≤ 2r is the SVP algorithm in infinity norm due

to [35], whose space and time complexities are 20.62t+o(t) and 20.415t+o(t) respectively. Hence, to ensure

128 bits of security, choosing t ≥ 207 would be enough. However, in practice, algorithms with much less

time complexity like BKZ [36] provide vectors far shorter than their theoretical bounds (see Paragraph

3.4.3). Considering the fact that SVP algorithms in infinity norm could always be improved, this makes

the first method risky. Besides, relying on lattice based problem to ensure the security of OSIDH would

damage its relevance as an isogeny based cryptosystem, since one of the main arguments in favor of

isogeny based cryptography is diversity, meaning introducing primitives based on distinct computational

problems and assumptions that of lattice based primitives prevailing in the NIST competition.

The second method is much safer but it has a strong drawback. As explained in Remark 3.19, if the

key space covers Cl(On), then OSIDH is vulnerable to our attack. Hence, we need to restrict the key

space to ensure λ
(∞)
1 (L) > 2r. By making that choice, we dramatically reduce the relevance of OSIDH

for other cryptographic constructions beyond Diffie-Hellman key exchange because we no longer have a

restricted effective group action (see Appendix C).

Besides, our attack can still be performed when λ
(∞)
1 (L) > 2r. Indeed, let us assume that we found

a short vector e ∈ L with norm ‖e‖∞ > 2r. Then, we may write e := e′ + e′′ + d with e′, e′′, d ∈ Zt such

that ‖e′‖∞ = ‖e′′‖∞ = r and d has infinity norm as small as possible. As previously, we can compute

the isogenies:

ϕ : En −→ E′ :=
t∏

j=1

[qj ]
e′j · En and ψ : En −→ E′′ :=

t∏
j=1

[qj ]
−e′′j · En =

t∏
j=1

[qj ]
e′j+dj · En.

In order to compute the endomorphism of En associated to e (whose kernel is En[
∏t
j=1 q

ej
j ]), it remains

to compute the isogeny E′ −→ E′′ associated to d (whose kernel is E′[
∏t
j=1 q

dj
j ]). Following Onuki’s

idea, we compute this isogeny by meet-in-the middle exhaustive search. Let us write d := d′ + d′′ with

d′j := bdj/2c and d′′j := dj − d′j for all j ∈ J1 ; tK. We compute:

φ : E′ −→
t∏

j=1

[qj ]
d′j · E′ and φ′ : E′′ −→

t∏
j=1

[qj ]
−d′′j · E′′ =

t∏
j=1

[qj ]
d′j · E′
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by exhaustively testing all isogenies of degree
∏t
j=1 q

|d′j |
j and

∏t
j=1 q

|d′′j |
j respectively, until the codomains

of φ and φ′ match. In that case, the desired endomorphism will be the composite ψ̂ ◦“φ′ ◦φ◦ϕ. Note that,

as in Onuki’s attack, we have no theoretical guarantee that such an isogeny will actually be a K-oriented

endomorphism. However, likewise,we can estimate the complexity of this attack.

Proposition 3.21. Under the heuristic assumption that L behaves like a random lattice among lattices

of covolume h(On) and that the shortest vector of L can be found in negligible time, our attack performs

in time:

Ω
Ä
(q1 + 1)

1
4 `
n/t−r

ä
,

where q1 := N(q1) is assumed to be the shortest prime among the qj := N(qj) for j ∈ J1 ; tK.

Proof. The dominant step in our attack is clearly the meet-in-the middle exhaustive search and its time

complexity is (up to polynomial factors):

Ω

(
t∏

j=1

(qj + 1)|d
′
j | +

t∏
j=1

(qj + 1)|d
′′
j |

)
.

By assumption d′ and d′′ cut d in half and e = e′ + e′′ + d, so that:

‖e‖∞ ≤ ‖e′‖∞ + ‖e′′‖∞ + ‖d‖∞ = 2r + ‖d‖∞

and ‖d‖∞ ≥ ‖e‖∞ − 2r ≥ λ(∞)
1 (L)− 2r. But by 3.18, we have:

λ
(∞)
1 (L) ≥

Å
1− log log(t)

t

ã
h(On)

1
t

2
∼

t→+∞

`
n
t

2
.

The result follows.

Example 3.22. For the parameters chosen by Colò and Kohel in [4, Section 6] (` = 2, t = 74, r = 5 and

K = Q(i)), the smallest value possible for q1 (as a splitting prime 6= `) is q1 = 5. To ensure a security

level of λ = 128 bits, we need to take n such that:

(q1 + 1)
1
4 `
n/t−r ≥ 2λ ⇐⇒ n ≥ t

log
Ä
4r + 4λ log(2)

log(q1+1)

ä
log(`)

.

It follows that n ≥ 575. The value n = 256 was initially proposed, and the parameters were chosen so

that the key space just covers Cl(On). (with few or no redundancies). With n ≥ 575, the key space is

way smaller than Cl(On).

3.4.3 Implementation

This attack was implemented in SageMath [6], partly with realistic parameters and completely (end-to-

end) with toy parameters. The source code is available on Github [13], more specifically:

• in the files Group_basis.py, Relations_lattice.py and Find_SVP.py for the partial attack with

realistic parameters;

• in the files OSIDH_attack.py and OSIDH_attack_tests.py for the end-to-end attack with toy

parameters.

With the parameters of [4, p. 28]: ` = 2, r = 5, t = 74 and n = 256 K = Q(i), and q1, · · · , qt
the t smallest splitting primes in OK the relation lattice L was computed in 2 h 31 using SageMath [6],

including 1 h 28 for the group basis computation with Algorithm 8 and 1 h 03 for the relations lattice

per se with 9. Have we known before performing the test that Cl(On) was cyclic and generated by [q1],
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the group basis computation could have been dramatically accelerated. The BKZ algorithm [36] was

applied to L using the fpylll library [37] with a block size k = 4 to find a vector e ∈ L of infinity norm

‖e‖∞ = 9 < 2r in less that 0.5 s, proving that our lattice based attack could be very efficient in practice

with large parameters.

With toy parameters (n = 28, t = 10,` = 2, r = 3 and K = Q(i)), we performed an end-to-end attack

on a protocol execution between two parties Alice and Bob. This attack included:

1. Our lattice based chain recovery of both Alice’s and Bob’s chains.

2. A recovery of Alice’s ideal class using the implementation presented in Paragraph 3.2.3.

3. The shared secret chain computation by acting with Alice’s ideal class on Bob’s chain.

Step 1 ran in 288.6 s (144.3 s per chain), step 2 ran in 90 s and step 3 ran in 6.4 s for a total execution

time of 385 s. In comparison, the protocol ran in 83.1 s.

As explained in Paragraph 3.2.3, the main limiting factor to test our attack with real parameters is

the ideal class group action. Roughly speaking, our implementation of the protocol is ”as slow as the

attack”.

3.5 Kuperberg’s attack

OSIDH is broken whenever the attacker is able to recover the secret ideal class [a] ∈ Cl(On), given the

public chain (Ei, ιi)0≤i≤n and the public data of Alice, namely the t horizontal chains:

[qj ]
−r · EA,n −→ · · · −→ EA,n −→ · · · −→ [qj ]

r · EA,n

for all j ∈ J1 ; tK (with (Ei,A, ι
′
i)0≤i≤n := [a] · (Ei, ιi)0≤i≤n). We consider the functions:

f : [c] ∈ Cl(On) 7−→ [c] · En and g : [c] ∈ Cl(On) 7−→ [c] · EA,n.

We know that f and g are injective and that g([c]) = f([a][c]) for all [c] ∈ Cl(On). Hence, our attack

reduces to the Hidden Shift Problem.

Problem 3.23 (Hidden Shift Problem (HSP)). Given f, g : G −→ S two injective functions such that

there exists s ∈ G such that g(x) = f(sx) for all x ∈ G, the problem is to determine s.

Theorem 3.24 (Kuperberg). We keep the notations of Problem 3.23. Given an oracle computing f and

g, there exists a quantum algorithm finding s with 2O(
√

log2(|G|)) qubits and quantum queries.

Proof. See Appendix B.6.

Remark 3.25. Actually, we know how to evaluate f and g on products of powers of the prime ideals

[qj ] but not on the whole group Cl(On) a priori. This could be an obstacle to Kuberberg’s algorithm

because we need an oracle computing these functions for any group element. Assuming those ideal classes

[qj ] generate Cl(On), these oracles can be computed provided that we can easily express any ideal class

[c] ∈ Cl(On) as a product of the [qj ]: [qj ] =
∏t
j=1[qj ]

ej , with small exponents ej , and the additional

restriction ej ∈ J−r ; rK for all j ∈ J1 ; tK to compute g. This can be done relatively efficiently with a

basis computation of Cl(On), a discrete logarithm computation and Babai’s algorithm with respect to

the relations lattice, as explained earlier.

However, the condition |ej | ≤ r might be an issue if the parameters are chosen so that (2r + 1)t �
|Cl(On)|. Hence, we can avoid both our lattice based classical attack and Kuperberg’s attack with this

choice of parameters.
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[4] Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. Cryptology ePrint Archive,

Report 2020/985, 2020. https://eprint.iacr.org/2020/985.

[5] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An

efficient post-quantum commutative group action. Cryptology ePrint Archive, Report 2018/383,

2018. https://eprint.iacr.org/2018/383.

[6] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2), 2021.

https://www.sagemath.org.

[7] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,

Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir

Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE.

Technical report, National Institute of Standards and Technology, 2020. available at https://

csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

[8] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. Sqisign:

Compact post-quantum signatures from quaternions and isogenies. In Shiho Moriai and Huaxiong

Wang, editors, Advances in Cryptology – ASIACRYPT 2020, pages 64–93, Cham, 2020. Springer

International Publishing.

[9] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On Isogenies. Cryp-

tology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.org/2006/145.

[10] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group

actions and applications. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology –

ASIACRYPT 2020, pages 411–439, Cham, 2020. Springer International Publishing.
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Appendix A

Mathematical prerequisites and

complements

A.1 p-adic integers

Let K be a number field and p be a prime ideal of OK lying above a prime number p. We define the

p-adic valuation on OK as follows:

∀x ∈ OK , vp(x) := sup{k ∈ N | x ∈ pk} ∈ N ∪ {+∞}.

This valuation can be easily extended to K by the formula vp(x/y) := vp(x) − vp(y) for all x, y ∈ OK
with y 6= 0. vp is indeed a valuation, meaning that for all x, y ∈ K:

(i) vp(x) = +∞⇐⇒ x = 0.

(ii) vp(xy) = vp(x) + vp(y).

(iii) vp(x+ y) ≥ min(vp(x), vp(y)).

This valuation extends the p-adic valuation on Q in the sense that vp = 1
evp on Q, where e is the

ramification index of p above p. Moreover, it can be proved that all elements of OK have nonnegative

p-adic valuations.

We can associate a norm to vp by setting |x|p := p−vp(x) for all x ∈ K. Unlike the complex module,

this norm is non-archimedean (because of property (iii)). One can define the p-adic completion Kp of

K for this norm |.|p, so that all Cauchy sequences converge. Formally, the completion is defined as the

quotient of the ring of Cauchy sequences by the maximal ideal of sequences converging to zero. We can

extend the valuation to Kp by setting for all x ∈ Kp, vp(x) := lim vp(xn), where (xn)n∈N is a Cauchy

sequence representing x. It can be proved that Kp is complete for the extended valuation (or equivalently,

the extended norm) [38, Theorem II.2.1]. Of course, we also have an injection K ↪→ Kp and Kp is unique

for these properties.

Let:

OK,p := {x ∈ Kp | vp(x) ≥ 0}

be the ring of integers of Kp. It can be proved that OK,p is integrally closed and has a unique maximal

ideal:

mp := {x ∈ Kp | vp(x) ≥ 1}.

This ideal is principal and a generator π ∈ mp is called a uniformizer. Hence OK,p is a discrete valuation

ring. Every element x ∈ Kp can be uniquely written as x = πvp(x)u with u ∈ O×K,p (i.e. such that
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vp(u) = 0) and admits a unique series development:

x = πvp(x)
+∞∑
n=0

anπ
n,

where the an lye in a subset of OK in bijection with OK/p via the reduction modulo p (see [38, Proposition

II.2.8]). As a consequence, we obtain a natural ring isomorphism:

OK,p/πnOK,p
∼−→ OK/pn

for all n ∈ N∗. In particular, the residue field OK,p/πOK,p is isomorphic to OK/p.

Theorem A.1 (Hensel’s lemma). Let F ∈ OK,p[X] and F ∈ OK/p[X] its reduction modulo mp. Let

g, h ∈ OK/p[X] be two coprime polynomials such that F = g · h. Then, there exist G,H ∈ OK,p[X] such

that F = G ·H and G ≡ g mod mp and G ≡ g mod mp.

Proof. See [38, Lemma II.3.5].

Corollary A.2. Let f ∈ OK/p[X] admitting a simple root α ∈ OK/p[X] and F ∈ OK,p[X] such that

F ≡ f mod mp. Then, there exists α̃ ∈ OK,p such that F (α̃) = 0 and α̃ ≡ α mod mp.

In particular, if f factors completely in OK/p[X] with simple roots, then so does F in OK,p[X] and

the roots of F reduce to the roots of f modulo mp.

A.2 Reduction of elliptic curves

Let R be a discrete valuation ring with unique prime ideal m, a uniformizer π and valuation v. Let L be

its field of fractions and k := R/m be the residue field and p := char(k). In practice, L will be a number

field, R will be the localization of OL at a place p lying above p so that m := pOL,p and π will be any

element of m\m2. In this case, we shall talk by abuse, of reduction modulo p instead of reduction modulo

m.

Let E be an elliptic curve defined over L. We assume that p ≥ 5 so that E admits a simplified

Weierstrass equation y2 = x3 + ax + b with a, b ∈ L. For all u ∈ L∗, we can substitute x′ := u2x and

y′ := u3y so that are changed into: a′ := u4a and b′ := u6b. With these substitutions, we can always

assume that a, b ∈ R. We can even find a Weierstrass equation with a, b ∈ R so that v(∆(E)) is minimal

[15, Proposition VII.1.3.(a)].

Then we can reduce a minimal Weierstrass equation modulo m = πR to obtain a curve E over k. If E

is singular we say that E has bad reduction modulo m. Otherwise, E is an elliptic curve and we say that

E has good reduction modulo m. It is clear that E has good reduction if and only if v(∆(E)) = 0 (∆(E)

being the minimal discriminant). If L is a number field, this case is not very frequent because OL is a

Dedekind domain so ∆(E) is the product of finitely many prime ideals so there are finitely many places

with bad reduction.

However, we would like to avoid bad reduction in all cases. It would be possible if we had more

freedom in the choice of u in the substitutions to get the minimal Weierstrass equation of E. This may

be done if we take a finite field extension L′/L. In this case, we say that E has potential good reduction.

Proposition A.3. E has potential good reduction if and only if j(E) ∈ R.

Proof. See [15, Proposition VII.5.5].

One we have reduced an elliptic curve E to a nonsigular one E modulo m, we can reduce points

working in projective coordinates and using scalars to make sure the coordinates are in integral (see [15,

VII.2 and VII.3] for details). The point reduction is a group homomorphism E(L) −→ E(k). If n is

prime to p = char(k), it induces an isomorphism E[n] −→ E[n].
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We can also reduce morphisms but the mathematical foundations of this reduction is far beyond the

scope of this report and uses Néron models (see [16, chapter IV] for a presentation of Néron models and

the forum stackexchange.com for the definition of morphism reduction). However, the properties of the

reduction of morphisms can be stated simply. Let E and F be ellpitic curve over L with good reduction

modulo m. Then there is a group homomorphism :

Hom(E,F ) −→ Hom(E,F ).

This map is in fact injective. But it is not always surjective : for instance, when E = F are defined over

a number field and E = F is supersingular. See the results of Deuring ([17, chapter 13]) for more about

this topic.

This definition is functorial, meaning that the reduction of the composite of two isogenies is the

composite of the reductions of these isogenies.

A.3 Some prerequisites on quaternions

We give the results of this section without proof. The reader may refer to [24] for a complete presentation.

A quaternion algebra over a field k is a 4-dimensional k-algebra B such that there exists i, j ∈ B and

a, b ∈ k∗ such that:

i2 = a, j2 = b and ij = −ji

We denote B = Hk(a, b) or simply H(a, b).

If B = H(a, b) is a quaternion algebra, then there is an involution called the conjugation, given by:

∀α := x+ yi+ zj + tij ∈ B, α := x− (yi+ zj + tij).

We define the reduced norm nrd and the reduced trace Tr as follows:

∀α ∈ B, nrd(α) := αα = αα and Tr(α) = α+ α

Every element α ∈ B is annihilated by X2 − Tr(α)X + nrd(α), so its degree over k is ≤ 2.

If char(k) 6= 2, then a quaternion algebra B defined over k is either a division algebra or a isomorphic

to M2(k) [24, Theorem 5.4.4]. When k = R there is (up to isomorphism) only one quaternion division

algebra which is the Hamilton quaternion algebra H := HR(−1,−1) [24, Corollary 3.5.8]. When k = Qp

is the p-adic field for a given prime number p 6= 2, the same result holds [24, Theorem 12.1.5].

Let B be a quaternion algebra defined over Q. We say that B ramifies at a prime p if B ⊗ Qp
is a division algebra and similarly, we say that B ramifies at ∞ if B ⊗ R ' H. The latter happens

if and only if a < 0 and b < 0. The set Ram(B) of places where B ramifies is finite and has even

cardinality [24, Proposition 14.2.1] and for every set of places Σ of even cardinality (included in the union

of prime numbers with {∞}), there exists a quaternion algebra B over Q such that Ram(B) = Σ [24,

Proposition 14.2.7]. Moreover, two quaternion algebra B and B′ defined over Q are isomorphic if and only

if Ram(B) = Ram(B′) [24, Proposition 14.3.1]. Hence, it makes sense to talk about ”the” quaternion

algebra Bp,∞ ramifying at p and ∞ (useful in the context of elliptic curves arithmetic).

In the following, we only consider quaternion algebras defined over Q. Let B be such an algebra. We

say that I ⊆ B is a lattice if it is a sub-Z-module of B of rank 4. A lattice R ⊂ B is an order if it is also

a subring of B (with unity: 1 ∈ R). If I ⊆ B is a lattice, we define its left-order and its right-order by:

OL(I) := {α ∈ B | α · I ⊆ I} and OR(I) := {α ∈ B | I · α ⊆ I}

respectively. A maximal order is an order of B that is maximal for the inclusion. Unlike in number fields,
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there is not a unique maximal order in a quaternion algebra. If R ⊆ B is an order, then R is integral

over Z, but not integrally closed in general (even if R is maximal).

Let R be an order of B. A (fractional) left-ideal I of R is a lattice I ⊆ B such that αI ⊆ I for all

α ∈ R. If R is maximal, we then have R = OL(I). We define right-ideals similarly.

Let I, J ⊆ B be two lattices. We say they are left-equivalent and denote I ∼L J or simply I ∼ J if

there exists β ∈ B such that J = Iβ. In that case, OL(I) = OL(J).

We say that a lattice I ⊆ B is integral if I2 ⊆ I. This is actually equivalent to I ⊆ OR(I) ∩ OL(J)

[24, Lemma 16.2.8].

Let R and R′ be maximal orders of B. A connecting ideal between R and R′ is a lattice I such that

OL(I) = R and OR(I) = R′. By [24, Lemma 17.4.7], I := R·R′ is a connecting ideal between R and R′.
If I ⊆ B is a lattice and (α1, · · · , α4) is a Z-basis of I, we define the discriminant of I by:

disc(I) := det (Tr(αiαj))1≤i,j≤4 .

It can be proved that such a quantity does not depend on the choice of a Z-basis. If I ⊆ J are two

lattices, then we have disc(I) = [J : I]2 disc(J)2 [24, Lemma 15.2.15].

If I ⊆ B is a lattice, we define the reduced norm of I by:

nrd(I) := gcd{nrd(α) | α ∈ I}.

The reduced norm is multiplicative. Besides,if I is an right or left integral ideal of a maximal order R,

then we have nrd(I)2 = [R : I]2 [24, Theorem 16.1.3].

A.4 The Deuring correspondence

Let E/Fp2 be a supersingular elliptic curve and R = End(E). By [24, Theorem 42.1.9], R is a maximal

order in the quaternion algebra Bp,∞ ' End0(E) ramifying at p and ∞. Any left integral R-ideal I ⊆ R
of norm prime to p defines a separable isogeny φI : E −→ EI whose kernel is:

E[I] =
⋂
α∈I

ker(α).

This definition can be generalized to ideals I of norm divisible by p by factoring them as follows I = P rI ′

where P is the only two sided R-ideal of norm p and I ′ is an integral left R-ideal of norm prime to p. One

pre-compose the isogeny associated to I ′ by the the r-th Frobenius map (see [24, 42.2.4]). The isogeny

φI associated to I has degree n(I), the reduced norm of I (by [24, Proposition 42.2.16.(a)]).

If I is an integral R-ideal, then the left-order of I is:

OL(I) := {α ∈ Bp,∞ | α · I ⊆ I} = R

and by [24, Lemma 42.2.9]:

OR(I) := {α ∈ Bp,∞ | I · α ⊆ I} ' End(EI).

If I ∼ J , then EI ' EJ (by [24, Lemma 42.2.13]).

Conversely, one can associate an integral left R-ideal to any finite subgroup H ⊆ E(Fp):

I(H) = {α ∈ R | ∀P ∈ H, α(P ) = 0}

and in particular, one can define the kernel ideal of an isogeny φ : E −→ F as I(ker(φ)), which is
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isomorphic to Hom(F,E) as a left R-module via:

ψ ∈ Hom(F,E) 7−→ ψ ◦ φ ∈ I(ker(φ))

by [24, Lemma 42.2.7]. Unsurprisingly, we always have I(E[I]) = I (by [24, Proposition 42.2.16.(b)]) and

every isogeny φ : E −→ F is determined by its kernel ideal I := I(ker(φ)) as follows: there exists an

isomorphism λ : EI
∼−→ F such that φ = λ ◦ φI (by [24, Corollary 42.2.21]).

If R′ is a maximal order of Bp,∞, then there exists a connecting integral ideal between R and R′, that

is to say a lattice I ⊆ R∩R′ such that OL(I) = R and OR(I) = R′. This ideal can easily be constructed

by taking I = RR′ and multiplying it by a certain integer to eliminate cumbersome denominators (see

[24, Lemma 17.4.7]). We then have End(EI) ' R′, so we just proved that any maximal order is the

endomorphism ring of a supersingular elliptic curve. For a given maximal order R, there are only two

elliptic curves at most with R as endomorphism ring up to isomorphism and one is the image of the other

by the p-th power Frobenius (see [24, Lemma 42.4.1]).

A.5 Structure of the ideal class group Cl(On)

Let K be a quadratic imaginary field such that h(OK) = 1, ` a small prime, n ∈ N∗ a big integer and

On = Z + `nOK the order of conductor `n. In this paragraph, we determine the structure of Cl(On)

and show that this group is either cyclic or quasi-cyclic. Most results of this paragraph are due to [19,

chapter 7] and [33, chapter 4].

Lemma A.4. Let K be a quadratic imaginary field such that Cl(OK) is trivial, f ∈ N \ {0, 1} and

O := Z+ fOK be the order of K of conductor f . Then, we have an exact sequence:

{1} −→ {±1} φ1−→ (Z/fZ)× ×O×K
φ2−→ (OK/fOK)×

φ3−→ Cl(O) −→ {1}.

Where the group homomorphisms are given by:

φ1 : x ∈ {±1} 7−→ (x, x) ∈ (Z/fZ)× ×O×K ,

φ2 : (x, ω) ∈ (Z/fZ)× ×O×K 7−→ [x · ω] ∈ (OK/fOK)×,

and φ3 : [α] ∈ (OK/fOK)× 7−→ [αOK ∩ O] ∈ Cl(O).

Proof. We have to prove that φ1 is injective (which is trivial), ker(φ2) = im(φ1), ker(φ3) = im(φ2) and

that φ3 is surjective. The surjectivity of φ3 comes from the fact that every ideal of O is given by the

intersection of an ideal of OK with O by [19, Proposition 7.20] and that every ideal of OK is principal.

We trivially have ker(φ2) ⊇ im(φ1). Conversely, let (x, ω) ∈ (Z/fZ)× × O×K such that x · ω ≡ 1

mod fOK so there exists a, b ∈ Z such that:

x · ω = 1 + fa+ fbθ,

where θ is a generator of OK . If K 6= Q(i),Q(
√
−3) then O×K = {±1} so b = 0 and (x, ω) ∈ {±(1, 1)} =

im(φ1). If K = Q(i), we may take θ := i and we have O×K = {±1,±i}. The case ω = ±i is impossible,

otherwise f would divide 1, so we must have ω = ±1 and we conclude as previously. If K = Q(
√
−3),

then we may assume that θ := (−1 + i
√

3)/2 and we have O×K = {±1,±θ,±θ2}. As previously, the case

ω = ±θ is impossible. If ω = ±θ2 = ∓(θ+ 1), then we must have fb = ∓x so f |x and x = 0 6∈ (Z/fZ)×.

Hence, ω = ±1 and we conclude as previously. Hence, ker(φ2) = im(φ1).

Now, we prove that ker(φ3) ⊇ im(φ2). Let (x, ω) ∈ (Z/fZ)× ×O×K . Then:

(x · ωOK) ∩ O = (xOK) ∩ O = xO,
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since x ∈ O, so φ2(x, ω) ∈ ker(φ3). Conversely, let [α] ∈ (OK/fOK)× such that [αOK ∩ O] = [1]. Then,

there exists β ∈ O such that αOK ∩ O = βO. Hence:

αOK = (αOK ∩ O) · OK = βOK ,

so that α = βu and β = αv with u, v ∈ OK , so that β = βuv, uv = 1 and u ∈ O×K . Let us write

β := a+ bfθ with a, b ∈ Z. Since [α] ∈ (OK/fOK)×, there exists γ ∈ OK such that αγ ≡ 1 mod fOK
and we get that N(α)N(γ) ≡ 1 [f ], so that f and N(α) are coprime. Since N(β) = N(α), it follows that

a is prime to f .Hence a ∈ (Z/fZ)× and:

[α] = [au] = φ2(a, u).

This completes the proof.

By the exact sequence of the lemma, we have:

Cl(On) ' (OK/`nOK)×/((Z/`nZ)× ×O×K/{±(1, 1)}).

Besides, we have an injective group homomorphism:

x ∈ (Z/`nZ)× 7−→ (x, 1) ∈ (Z/`nZ)× ×O×K/{±(1, 1)},

inducing a surjection:

(OK/`nOK)×/(Z/`nZ)× −� Cl(On) (??).

Hence, we shall deduce the structure of Cl(On) from the structure of (OK/`nOK)×/(Z/`nZ)×.

The structure of (Z/`nZ)× is well known (it is either cyclic or quasi cyclic for ` = 2). Now, we

determine the structure of (OK/`nOK)×. By the following lemma, this problem reduces to determining

(OK/ln)times where l is a prime ideal of OK lying above `.

Lemma A.5. Let K be a number field and a, b ⊆ OK two coprime integral ideals (a + b = OK). Then,

we have:

(OK/ab)× ' (OK/a)× × (OK/b)×.

Proof. We construct a split exact sequence:

{1} −→ (OK/a)×
φ−→ (OK/ab)×

σ

�
ψ

(OK/b)× −→ {1}.

Let a ∈ a and b ∈ b such that a+ b = 1. Then, we set, for all x, y, z ∈ OK :

φ(x) = bx+ a, ψ(y) = y and σ(z) = az + b,

where the overline denotes the residue class modulo a, b or ab, depending on the context.

ψ is trivially a well-defined and surjective group homomorphism since ab ⊆ b.

Similarly, if x, x′ ∈ OK satisfy x− x′ ∈ a then bx+ a− (bx′ + a) = b(x− x′) ∈ ab so φ is well-defined

as a map OK/a −→ OK/ab. Besides, if xx′ ≡ 1 mod a then:

(bx+ a)(bx′ + a) = b2xx′ + ab(x+ x′) + a2 ≡ a2 + b2 mod ab.

But a2 = a(1− b) ≡ a mod ab and b2 = b(1− a) ≡ b mod ab, so that:

(bx+ a)(bx′ + a) ≡ a+ b ≡ 1 mod ab,
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so φ maps invertibles to invertibles and is well defined. By the same arguments (exchanging the roles of

a and b), we get that σ is well defined.

If x, x′ ∈ OK are invertible modulo a, we also have:

φ(x)φ(x′) = (bx+ a)(bx′ + a) = b2xx′ + ab(x+ x′) + a2 = b2xx′ + a2 = bxx′ + a = φ(xx′),

since a2 ≡ a mod ab and b2 ≡ b mod ab. Hence, φ is a group homomorphism and by symmetry, σ as

well.

If φ(x) = 1, then bx+a ≡ 1 mod ab so bx ≡ 1 mod a so x ≡ 1 mod a i.e. x = 1, since b = 1−a ≡ 1

mod a. Hence, φ is injective.

Finally, we have ψ ◦ σ = id, since a ≡ 1 mod b so we have indeed a split exact sequence. It follows

that:

Φ : (x, y) ∈ (OK/a)× × (OK/b)× 7−→ φ(x)σ(y) ∈ (OK/ab)×

is a group isomorphism.

A.5.1 Determining the structure of (OK/l
n)×

Proposition A.6. Let f be the inertia index of l and q := `f . G := (OK/ln)×,

W := {x ∈ G | xq−1 = 1}

and Gl := (1 + l)/(1 + ln) (seen as a subgroup of G). Then:

(i) W ' (OK/l)×, so W is cyclic of order q − 1.

(ii) Gl is a `-group of order qn−1.

(iii) G 'W ×Gl.

Proof. (i) OK/l is a finite field with q elements so the invertible elements form a cyclic group of order

q − 1 and all of them are roots of Xq−1 − 1, so Xq−1 − 1 is completely factored in OK/l[X] with simple

roots:

Xq−1 − 1 ≡
∏

x∈(OK/l)×
(X − x) mod l.

By Hensel’s lemma (see Corollary A.2), this factorization can be lifted in OK,p[X]. By reducing it modulo

ln, we obtain a factorization mod ln:

Xq−1 − 1 ≡
∏
y∈E

(X − y) mod ln.

Where E ⊆ OK/ln is set of q − 1 elements reducing to (OK/l)× modulo l. Actually, E ⊆ (OK/ln)×

because x ∈ E implies that x is invertible with inverse xq−2 and we even have E ⊆ W . Let us consider

the group homomorphism:

ϕ : x ∈W 7−→ (x mod l) ∈ (OK/l)×.

Since ϕ(E) = W , ϕ is surjective. Now, if x ∈W , then:

0 = xq−1 − 1 ≡
∏
y∈E

(x− y) mod ln.

But x modulo l, is only congruent to one element of (OK/l)×, so there exists y ∈ E such that x ≡ y

mod l and for all y′ ∈ E \ {y}, x 6≡ y mod l. As a consequence, we must have x = y so y ∈ E.As a

consequence, ϕ is injective.
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(ii) We have a bijection Gl = (1 + l)/(1 + ln) 7−→ l/ln mapping 1 + x to x. We also have a natural

exact sequence:

{1} −→ l/ln −→ OK/ln −→ OK/l −→ {1},

so that:

N(ln) = N(l)|l/ln| i.e. |l/ln| = N(`)n−1 = `f(n−1) = qn−1,

so that Gl is indeed an `-group of cardinality qn−1.

(iii) Let us consider the group homomorphism:

ψ : (x, y) ∈W ×Gl 7−→ x · y ∈ G.

Let (x, y) ∈ W × Gl such that ψ(x, y) = xy = 1. Since y ≡ 1 mod l, we have x ≡ 1 mod l, so that

x = 1, by injectivity of the morphism ϕ of point (i), and y = 1. So ψ is injective.

If z ∈ G, then we consider a lift x ∈W of z mod l (by surjectivity of the map ϕ of point (i)) and we

set y := x−1z. Then, y ≡ 1 mod l so y ∈ Gl and ψ(x, y) = z. Hence, ψ is an isomorphism.

It remains to determine the structure of Gl := (1+ l)/(1+ ln). The main idea here is to prove that the

multiplicative group Gl is isomorphic to the additive group OK/ln−1 under some conditions. Fortunately,

the group structure of OK/ln−1 will be easy to determine.

To linearise the multiplicative structure, we shall use the l-adic logarithm.

Definition A.7. Let Kl be the l-adic completion of K. For all x ∈ Kl such that vl(x) ≥ 1, we define

the l-adic logarithm of 1 + x by:

logl(1 + x) :=
+∞∑
i=1

(−1)i−1

i
xi.

Let e be the ramification index of l above `. Then, for all x ∈ Kl such that vl(x) > e/(`− 1), we define

the l-adic exponential of x by:

expl(x) :=
+∞∑
i=0

xi

i!
.

Proposition A.8. Let x, y ∈ Kl and e be the ramification index of l above `. Then:

(i) logl(1 + x) is well defined if vl(x) ≥ 1 and expl(x) is well defined if vl(x) > e/(`− 1).

(ii) If vl(x) ≥ 1 and vl(y) ≥ 1, we have:

logl((1 + x)(1 + y)) = logl(1 + x) + logl(1 + y).

If vl(x) > e/(`− 1) and vl(y) > e/(`− 1),we have:

expl(x+ y) = expl(x) expl(y).

(iii) If vl(x) > e/(`− 1), then vl(logl(1 + x)) = vl(x) and vl(expl(x)− 1) = vl(x).

(iv) If vl(x) > e/(`− 1), then we have:

expl(logl(1 + x)) = 1 + x and logl(expl(x)) = x.

Proof. (i) In the l-adic topology, a series converge if and only if its terms converge towards zero. If

vl(x) ≥ 1, the we have for all i ∈ N∗:

vl

Å
(−1)i−1

i
xi
ã

= ivl(x)− vl(i) = ivl(x)− ev`(i) ≥ i− e
log(i)

log(`)
.
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Hence, vl

(
(−1)i−1

i xi
)
−−−−→
i→+∞

+∞ and the series logl(1 + x) converge.

For all i ∈ N, we have:

vl

Å
xi

i!

ã
= ivl(x)− vl(i!) = ivl(x)− ev`(i!),

with:

v`(i!) =
+∞∑
k=1

õ
i

`k

û
=

blog`(i)c∑
k=1

i

`k
=
i

`

1− 1
`blog`(i)c

1− 1
`

=
i− i

`blog`(i)c

`− 1
≤ i− 1

`− 1
<

i

`− 1
,

so that, if vl(x) > e/(`− 1):

vl

Å
xi

i!

ã
= i

Å
vl(x)− ev`(i!)

i

ã
> i

Å
v`(x)− e

`− 1

ã
≥ i

and vl
Ä
xi

i!

ä
−−−−→
i→+∞

+∞. Hence, exp`(x) converges.

(ii) The equalities hold in the ring of formal series (and can be proved over the complex numbers) so

they hold as long as the series involved converge, which is true by (i) for the values of vl(x) and vl(x)

that we assumed.

(iii) We assume that vl(x) > e/(`− 1). To prove that vl(logl(1 + x)) = vl(x), it suffices to prove that

vl(x
i/i) > vl(x) for all i ≥ 2. Let i ≥ 2. Then:

vl

Å
xi

i

ã
− vl(x) = (i− 1)vl(x)− ev`(i) > e

Å
i− 1

`− 1
− v`(i)

ã
≥ e(v`(i!)− v`(i)) = ev`((i− 1)!) ≥ 0,

since we have seen that v`(i!) ≤ (i− 1)/(`− 1). Hence, vl(logl(1 + x)) = vl(x).

Now, if i ≥ 2, we have:

vl

Å
xi

i!

ã
− vl(x) = (i− 1)vl(x)− ev`(i!) > (i− 1)

e

`− 1
− e i− 1

`− 1
= 0.

So we conclude that vl(expl(x)− 1) = vl(x), as previously.

(iv) (iii) ensures that the series involved in the equalities to be proved converge. Since those equalities

hold in the ring of formal series, we conclude as in (ii).

Corollary A.9. Suppose that ` ≥ e+2. Then logl and expl induce reciprocal group isomorphisms between

Gl = (1 + l)/(1 + ln) and l/ln (for n ∈ N∗).

Proof. Since ` ≥ e + 2, we have e/(` − 1) < 1 so expl is well defined on l by Proposition A.6.(i).

Point (iii) of this Proposition ensures that Gl maps to l/ln via logl and that l/ln maps to Gl via expl.

By point (ii), those are group homomorphisms and by point (iv), those homomorphisms are reciprocal

isomorphisms.

Lemma A.10. For n ∈ N∗, we have an isomorphism of additive groups OK/ln−1 ' l/ln.

Proof. We have l2 ( l (otherwise, these ideals would have the same norm), so there exists α ∈ l \ l2. We

consider the additive homomorphism x ∈ OK 7−→ αx ∈ l. Since this homomorphism maps ln−1 to ln, it

induces a homomorphism φ : OK/ln−1 −→ l/ln. If x ∈ OK satisfies αx ∈ ln, then:

vl(x) = vl(αx)− vl(α) ≥ n− 1,

so that x ∈ ln−1. Hence, φ is injective, and this is an isomorphism because:

|l/ln| = N(l)n

N(l)
= N(l)n−1 = |OK/ln−1|,
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since we have the exact sequence:

{1} −→ l/ln −→ OK/ln −→ OK/l −→ {1}.

Proposition A.11. Let K be a number field and l, a prime ideal of OK lying over a prime number `.

Let k ∈ N∗, e and f respectively the ramification and inertia index of l above `, q and r be the quotient

and remainder in the euclidean division of k+ e− 1 by e: k+ e− 1 = eq+ r (r ∈ J0 ; e− 1K). Then, we

have the following additive group isomorphism:

(OK/lk) ' (Z/`qZ)(r+1)f × (Z/`q−1Z)(e−r−1)f .

Proof. We have |OK/lk| = N(lk) = `kf so OK/lk is a `-group and the structure theorem of finite abelian

group ensures that:

OK/lk =
∏
i≥1

(Z/`iZ)ai ,

where (ai)i≥1 is an almost zero sequence of integers such that:

+∞∑
i=1

iai = kf (1).

We shall now obtain more relations as above to compute all the ai. Let j ∈ N∗. Then:

`j(OK/lk) =
∏
i≥j+1

(Z/`i−jZ)ai ,

so that:

log`(|`j(OK/lk)|) =
+∞∑
i=j+1

(i− j)ai (2).

But `j(OK/lk) = b/lk with b = `jOK + lk. Since b is an integral ideal of OK , which is Dedekind by [19,

Corollary 5.6], b can be written as a product of prime ideals:

b =
r∏
i=1

leii ,

where li are distinct primes and the ei are positive integers. This decomposition is unique.Since lk ⊆ b,

we have lk ⊆ li for all i ∈ J1 ; rK, so l ⊆ li since l is prime, so r = 1 and l1 = l i.e. b is a power of l and:

vl(b) = min(vl(p
jOK), vl(l

k)) = min(ej, k),

so that b = ellmin(ej,k). Furthermore, since lk ⊆ b, we have a natural exact sequence:

{0} −→ (b/lk) −→ (OK/lk) −→ (OK/b) −→ {0},

so that:

|b/lk| = |OK/l
k|

|OK/b|
=
N(lk)

N(b)
= `f(k−min(ej,k)) = `f(k−min(ej,k)) = `f max(k−ej,0).

By (2), it follows that:

f max(k − ej, 0) =
+∞∑
i=j+1

(i− j)ai (3).

It follows that ai = 0 for all i > dk/ee. Let q and r be the quotient and remainder in the euclidean
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division of k+e−1 by e: k+e−1 = eq+r (r ∈ J0 ; e− 1K). Then q = k/e+(k+e−1)/e ∈ [k/e, k/e+1[,

so that q = dk/ee. By (3) applied at j = q − 1, we get that:

aq = f(k − e(q − 1)) = f(r + 1).

Applying (3) again at j = q − 2, we get:

aq−1 = f(k − e(q − 2))− 2aq = f(r + 1 + e)− 2f(r + 1) = f(e− r − 1).

Since:

qaq + (q − 1)aq−1 = qf(r + 1) + (q − 1)f(e− r − 1) = qfe− f(e− r − 1) = f(qe+ r + 1− e) = kf,

we have ai = 0 for all i ∈ J1 ; q − 2K by (1). The result follows.

Corollary A.12. Let n ≥ 2, e and f be respectively the ramification and inertia index of l above ` and

q and r the quotient and remainder in the euclidean division of n + e − 2 by e: n + e − 2 = eq + r with

r ∈ J0 ; e− 1K. We assume that ` ≥ e+ 2. Then, we have:

(OK/ln)× ' (Z/(`f − 1)Z)× (Z/`qZ)(r+1)f × (Z/`q−1Z)(e−r−1)f .

Proof. This result follows directly from Proposition A.6, Lemma A.10 and Proposition A.11.

A.5.2 Case ` ≥ e+ 2

Hence, we assume that ` ≥ e+ 2. Then, by the previous corollary, we have:

(OK/`nOK)× '


(Z/(`− 1)Z)2 × (Z/`n−1Z)2 if ` splits in K

(Z/(`− 1)Z)× (Z/`n−1Z)× (Z/`nZ) if ` ramifies in K

(Z/(`2 − 1)Z)× (Z/`n−1Z)2 if ` is inert in K.

Since ` ≥ e+ 2 ≥ 3, by [39, Theorem IV.2], (Z/`nZ)× is cyclic, so that:

(Z/`nZ)× ' Z/ϕ(`n)Z = Z/(`− 1)`n−1Z ' (Z/(`− 1)Z)× (Z/`n−1Z).

To compute the quotient, (OK/`nOK)×/(Z/`nZ)×, we need the following result.

Lemma A.13. (i) Let Φ : G1 × G2 7−→ H1 × H2 be an injective group homomorphism between finite

groups. Suppose that |H1| and |H2| are coprime and that |Gi|||Hi| for i ∈ {1, 2}. Then there exists

injective group homomorphisms ϕi : Gi −→ Hi for i ∈ {1, 2} such that:

∀(g1, g2) ∈ G1 ×G2, Φ(g1, g2) = (ϕ1(g1), ϕ(g2)).

(ii) Let d ∈ N∗ and:

ϕ : Z/dZ 7−→ (Z/dZ)2

be an injective group homomorphism. Then:

(Z/dZ)2/ im(ϕ) ' Z/dZ.

(iii) Let ϕ : Z/`n−1Z −→ (Z/`n−1Z)× (Z/`nZ) be an injective group homomorphism, then:

(Z/`n−1Z)× (Z/`nZ)/ im(ϕ) ' Z/`nZ or (Z/`Z)× (Z/`n−1Z).
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Proof. (i) We may write Φ(g) := (φ1(g), φ2(g)) for all g ∈ G1 × G2, where φi : G1 × G2 −→ Hi are

group homomorphisms. Let g1 ∈ G1. Then, |φ2(g1, 1)|||g1| (|x| being the order of x) and by Lagrange’s

theorem |φ2(g1, 1)|||H2| and |g1|||G1|||H1|. Since |H1| and |H2| are coprime, we have |φ2(g1, 1)| = 1 so

φ2(g1, 1) = 1. By similar arguments, φ1(1, g2) = 1 for all g2 ∈ G2 and the result follows.

(ii) Let ϕ(1) := (a, b), with a, b ∈ J0 ; d− 1K. Since ϕ is injective, ϕ(1) has order d so a, b and d are

coprime. As a consequence, there exists u, v ∈ J0 ; d− 1K such that au+ bv ≡ 1 [d]. As a consequence,

(x, y) ∈ (Z/dZ)2 7−→ (ax− vy, bx+ uy) ∈ (Z/dZ)2

is an automorphism of Z-modules because its matrix in the canonical basis of (Z/dZ)2 has determinant

au+ bv = 1. It follows that

(Z/dZ)2 = Z(a, b)⊕Z(−v, u) = im(ϕ)⊕Z(−v, u),

so that (Z/dZ)2/ im(ϕ) ' Z(−v, u) ' Z/dZ.

(iii) Let a, b ∈ Z such that ϕ(1) = (a, b). Since ϕ is injective, ϕ(1) has order `n−1 so `n−1b = 0 i.e.

`n|`n−1b i.e. `|b. So we may write a := `ea′ and b := `fb′ with a′ and b′ prime to `, and (e, f) ∈ N×N∗.
It follows that

`n−1 = |ϕ(1)| = lcm(|a|, |b|) = lcm(`n−1−e, `n−f ) = `max(n−1−e,n−f),

so that max(n− 1− e, n− f) = n− 1. If e = 0, then a generates Z/`n−1Z, so

(Z/`n−1Z)× (Z/`nZ) = im(ϕ)⊕ {0} ×Z/`nZ,

and we immediately conclude that the quotient is isomorphic to Z/`nZ.

Else, we have f = 1. To conclude, it suffices to prove that the quotient has exponent `n−1. Let

x, y ∈ Z. Then, `n−1(x, y) = (0, `n−1y) = ϕ(`n−2k) with k ∈ Z such that kb′ ≡ y [`] (such a k

exists because b′ and ` are coprime). Hence, the exponent of the quotient divides `n−1. Furthermore,

if `n−2(1, 0) = ϕ(k′) for some k′ ∈ Z then `n|k′`b′ so `n−1|k′ since gcd(`, b′) = 1. Hence, k′ = 0 and

`n−2(1, 0) = 0. Contradiction. So (1, 0) has order `n−1 in the quotient. This completes the proof.

Applying the previous lemma and the fact that a quotient of cyclic groups is cyclic, we conclude that:

(OK/`nOK)×/(Z/`nZ)× '


(Z/(`− 1)Z)× (Z/`n−1Z) if ` splits

Z/`nZ or (Z/`Z)× (Z/`n−1Z) if ` ramifies

(Z/(`+ 1)Z)× (Z/`n−1Z) if ` is inert.

By the surjection (??), we conclude that Cl(On) is either cyclic or has rank 2 with a tiny cyclic factor of

order `, the last case happening only when ` ramifies in K.

A.5.3 Case ` < e+ 2

Now, we assume that ` < e+ 2. Hence, ` = 2 or ` = 3 and ` ramifies in K. We shall conclude with the

following lemma:

Lemma A.14. (i) Let a be an OK-ideal prime to ` that we may write a = αOK with α ∈ OK (Cl(OK)

being trivial). Let i ∈ N∗. Then a ∩ Oi is principal if and only if α ∈ O×K · Oi.

(ii) Let i ∈ N∗ and α ∈ Oi. Then, α` ∈ Oi+1. Assume furthermore that i ≥ 2, ` - N(α) and

α ∈ Oi \ Oi+1. Then, α ∈ Oi+1 \ Oi+2.
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(iii) Let i ∈ N∗ and α ∈ O×K · (Oi \ Oi+1) such that ` - N(α). Then, α ∈ O×K · Oi+1.

(iv) Let i0 ≥ 2 such that Cl(Oi0) has exponent k and Cl(Oi0+1) has exponent k`. Then, there exists an

OK-ideal a such that a∩Oi has order k`i−i0 in Cl(Oi) for all i ≥ i0 and Cl(Oi) has exponent k`i−i0

for all i ≥ i0.

Proof. (i) Assume that a ∩ Oi is principal. Then, there exists β ∈ Oi such that a ∩ Oi = βOi. By [19,

Proposition 7.20], it follows that αOK = a = (a ∩ Oi)OK = βOK . Hence, α = βu and β = αv with

u, v ∈ OK , so that β = βuv, uv = 1 and u ∈ O×K , so that α ∈ O×K · Oi. The converse is trivial.

(ii) Let θ be a generator of OK . Let us write α = a+ b`iθ. Then:

α` = a` + `i+1a`−1bθ +
∑̀
k=2

Ç
`

k

å
a`−k`ikbkθk ∈ Z+ `i+1OK = Oi+1.

Now, assume that i ≥ 2, ` - N(α) and α 6∈ Oi+1. Since `|
(
`
k

)
for all k ∈ J1 ; `− 1K and i ≥ 2, we have:

∑̀
k=2

Ç
`

k

å
a`−k`ikbkθk ∈ `i+2OK .

Hence, to conclude that α` 6∈ Oi+2, it suffices to prove that ` - a`−1b. But ` - a since ` - N(α) and ` - b
since α 6∈ Oi+1. The result follows.

(iii) For K 6= Q(
√
−1),Q(

√
−3), we have O×K = {±1} so the result trivially holds.

Assume that K := Q(
√
−1). Let θ :=

√
−1. Then, OK = Z[θ] and O×K = {±1,±θ}. Let α ∈ Oi that

we may write α := a+ b`iθ with a, b ∈ Z. Then:

θα = −b`i + aθ.

Since ` - N(α), ` - a so θα 6∈ Oi+1. The result follows in that case.

Assume that K := Q(
√
−3). Let θ := (−1+

√
−3)/2. Then, OK = Z[θ] and O×K = {±1,±θ,±θ2}.Let

α ∈ Oi \ Oi+1 that we may write α := a+ b`iθ with a, b ∈ Z. Then:

θα = aθ + b`iθ2 = aθ − b`i(θ + 1) = −b`i + (a− b`i)θ

and θ2α = −b`iθ + (a− b`i)θ2 = aθ − (a− b`i)(θ + 1) = b`i − a+ b`iθ.

Since ` - N(α), ` - a so θα 6∈ Oi+1. Since α 6∈ Oi+1, ` - b so that θ2α 6∈ Oi+1. The result follows.

(iv) Let i ≥ i0. Then, by [19, Proposition 7.20] every invertible ideal of Oi is of the form a ∩ Oi for

a certain OK-ideal a prime to `. Let us write a := αOK for α ∈ OK . Then, ak ∩ Oi0 is principal (since

Cl(Oi0) has exponent k) so αk ∈ O×K · Oi0 by (i) and by (ii), αk`
i−i0 ∈ O×K · Oi, so that ak`

i−i0 ∩ Oi is

principal. Hence, the exponent of Cl(Oi) divides k`i−i0 .

Let a be an OK-ideal prime to ` such that a∩Oi0+1 has order k` in Cl(Oi0+1). Let us write a := αOK
with α ∈ OK . Let d be the order of a∩Oi0 in Cl(Oi0). Then, αd ∈ O×K ·Oi0 by (i), so that αd` ∈ O×K ·Oi0+1

by (ii), so that the order of a ∩ Oi0+1 in Cl(Oi0+1) divides d`., i.e. k`|d` so k|d. But we also have d|k
because Cl(Oi0) has exponent k, so d = k.

We have αk ∈ O×K · (Oi0 \Oi0+1), otherwise, by (i), a∩Oi0+1 would have order ≤ k. By (ii), it follows

that αk`
i−i0 ∈ O×K · (Oi \ Oi+1) for all i ≥ i0.

Now, we prove by induction on i ≥ i0 that a ∩ Oi has order k`i−i0 . As we already saw, the result

holds for i ∈ {i0, i0 + 1}. Let i ≥ i0 + 1. Assume that a ∩ Oi has order k`i−i0 . It follows that for all

d ∈ N∗, αd ∈ O×K · Oi if and only if k`i−i0 |d. As a consequence, αk`
i+1−i0 ∈ O×K · Oi+1 and if d ∈ N∗ is

such that αd ∈ O×K · Oi+1 ⊆ O×K · Oi, then we must have k`i−i0 |d and d|k`i+1−i0 since the exponent of

Cl(Oi+1) divides k`i+1−i0 . But αk`
i−i0 6∈ OK · Oi+1 since αk`

i−i0 6∈ OK · (Oi \Oi+1) and by (iii). Hence,

a ∩ Oi+1 has order k`i+1−i0 . This completes the proof.
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By point (iv) of the previous lemma, we determine the structure of Cl(On) by computing the exponent

of Cl(O2) and Cl(O3). Since Cl(OK) is trivial, we have:

disc(K) ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163},

by [19, Theorem 7.30.(i)], so we have a limited number of computations to make. What happens is usually

that either Cl(O2) and Cl(O3) are cyclic, in that case Cl(On) is cyclic or Cl(Oi0) ' (Z/`Z) × (Z/kZ)

and Cl(Oi0+1) ' (Z/`Z) × (Z/k`Z) for certain integers i0 ≥ 2 and k ≥ 2, in which case Cl(On) '
(Z/`Z) × (Z/k`n−i0Z). We performed the computations with Magma [40] and obtained the following

results:

disc(K)

`
2 3

−3 (Z/2Z)× (Z/2n−2Z) Z/3n−1Z

−4 Z/2n−1Z

−7 (Z/2Z)× (Z/2n−2Z)

−8 Z/2n−1Z

−11 (Z/2Z)× (Z/3 · 2n−2Z)

−19 (Z/2Z)× (Z/3 · 2n−2Z)

−43 (Z/2Z)× (Z/3 · 2n−2Z)

−67 (Z/2Z)× (Z/3 · 2n−2Z)

−163 (Z/2Z)× (Z/3 · 2n−2Z)

Finally, we have proved the following result:

Theorem A.15. One of the following results hold:

(i) For all n ≥ 1, Cl(On) is cyclic.

(ii) For all n ≥ 2, Cl(On) ' (Z/`Z)× (Z/hn−1Z) with:

hn−1 := |Cl(On−1)| = `n−2

[O×K : O×1 ]

Å
`−
Å

∆K

`

ãã
,

where ∆K := disc(K).

The last case only happens when ` = 2 or when ` ≥ 3 ramifies in K (this condition is necessary but not

sufficient).
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Appendix B

Algorithms

B.1 Proper representation of an integer by a positive definite

primitive quadratic form

We follow the approach of [41, § 46, pp. 73-75]. We want to solve f(x, y) = u for x, y ∈ Z with

gcd(x, y) = 1, where f := [a, b, c] is a positive definite primitive quadratic form of discriminant d < 0.

The following algorithm determines if a solution exists and provides one.

Algorithm 2: Proper representation of an integer

Data: An integer u ∈ N and [a, b, c], a positive definite primitive quadratic form of discriminant
d < 0.

Result: A solution (x, y) of the equation f(x, y) = u if there exists one, the boolean value False
otherwise.

1 Find a solution v ∈ J0 ; 2uK to v2 ≡ d [4u], e.g. using Tonelli-Shanks algorithm [28, Algorithm
1.5.1] when u is prime to find a square root mod u, and conclude by Chinese remainder theorem.
If d is not a square mod 4u, return False;

2 Compute w ∈ Z such that v2 − 4uw = d;
3 Find the reduced form [a′, b′, c′] of [a, b, c] and the associated unimodular transformation

x := a1x
′ + b1y

′, y := c1x+ d1y associated to it, using Gauss reduction algorithm described in
[19, Theorem 2.8];

4 Find the reduced form [u′, v′, w′] of [u, v, w] and the associated unimodular transformation
x := a2x

′ + b2y
′, y := c2x+ d2y associated to it;

5 if [a′, b′, c′] = [u′, v′, w′] then
6 x := a2d1 − b2c1, y := −a2b1 + b2a1;
7 Return (x, y);

8 else
9 Return False;

10 end

It could be proved that this algorithm is correct and terminates in polynomial time in the size (number

of bits) of u, a, b, c.

B.2 The KLPT algorithm

Let p be a prime number. In this section, we shall mean polynomial in log(p) every time we use the term

polynomial.

We fix R a concise maximal order of Bp,∞ and I ⊆ R an integral and concise left R-ideal (as defined

in Definition 3.1). The KLPT algorithm due to Kohel, Lauter, Petit and Tignol [27] finds an equivalent

integral ideal J ∼ I of powersmooth norm in polynomial time (in log(p)). The main idea of this algorithm

lies in the following lemma:
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Lemma B.1. Let Then for all α ∈ I, J := I α
nrd(I) is an integral left R-ideal equivalent to I and

nrd(J) = nrd(α)
nrd(I) , nrd being the reduced norm.

Proof. We have α ∈ I so α ∈ I and Iα ⊆ II. But II = nrd(I)R (by [24, 16.6.14]), so that J = I α
nrd(I) ⊆ R

and J is integral.

Finally, by multiplicativity of the reduced norm [24, Lemma 16.3.7], we have:

nrd(J) = nrd(I) nrd

Å
α

nrd(I)

ã
= nrd(I)

nrd(α)

nrd(I)2
=

nrd(α)

nrd(I)
.

Hence, by the previous lemma, the goal of this algorithm is to find α ∈ I of norm nrd(I)S where S is

a powersmooth integer. The different steps of the algorithm are presented below (see Algorithm 3). For

this algorithm to work, R may not be any maximal order, but rather a special order defined as follows:

Definition B.2. We say that a maximal order R ⊆ Bp,∞ is special if j ∈ R (with j2 = −p) and there

exists a subring of rank 2, R ⊂ R, such that R⊥ ⊆ Rj, where R⊥ is the orthogonal of R for the scalar

product given by:

(α, β) ∈ B2
p,∞ 7−→ (α|β) := nrd(α+ β)− nrd(α)− nrd(β) = Tr(αβ).

Example B.3. Recall the setting of Example 3.2. When p ≡ 3 [4] and E0 : y2 = x3 + x, and the

endomorphism ring is isomorphic to R0 := 〈1, j, i+j2 , 1+k
2 〉 and we may take R := Z[i] ⊆ R0.

Remark B.4. In practice, it will be very useful to have |disc(R)| sufficiently small, i.e. polynomial (in

log(p)). For any p, we can always find an order R with |disc(R)| = O(log(p)2), and even disc(R) = −4

(as in Example B.3) and disc(R) = −8 when p 6≡ 1 [8] (see [27, Section 2.3]). We shall always assume

that |disc(R)| = O(log(p)2) in the following.

As previously announced, the following algorithm works under the hypothesis that R is special but

it can be generalized by using a connecting ideal to a special order and two instances of this algorithm

(see [27, Theorem 9]).

Algorithm 3: The KLPT algorithm

Data: A special order R and an integral left R-ideal I ⊆ R.

Result: An equivalent integral ideal J ∼ I of powersmooth norm.

1 Step a: Find δ ∈ I of norm N nrd(I) where N is a prime number 6= p and compute

I ′ := Iδ/nrd(I);

2 Step b: Find α ∈ I ′ such that I ′ = RN +Rα;

3 Step c: Find β1 ∈ R of norm NS1, with S1 powersmooth;

4 Step d: Find β2 ∈ jR such that α ≡ β1β2 mod RN ;

5 Step e: Find β′2 ∈ R with powersmooth norm S2 and λ ∈ (Z/NZ)∗ such that β′2 ≡ λβ2 mod RN ;

6 Step f: Set β := β1β
′
2 and return J := I ′β/N ;

Step a

H := Bp,∞⊗QR ' R4 is a normed vector space for the norm associated to the scalar product of Definition

B.2, given by ‖α‖2 := 2 nrd(α) for all α ∈ H. As a lattice, I admits a Minkowski reduced Z-basis, defined

as follows:

Definition B.5. Let Λ ⊆ Rd be a lattice. of rank r. A Minkowski reduced basis of Λ is a Z-basis

(b1, · · · , br) of Λ such that for all i ∈ J1 ; rK, bi is the shortest vector (for the euclidean norm) such that

(b1, · · · , bi) can be completed into a Z-basis of Λ.
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[42] provides an algorithm finding a Minkowski reduced basis (b1, · · · , br) of Λ given a basis (e1, · · · , er)
of Λ when Λ ⊆ Zd (we can always reduce to this case by multiplying all vectors by the lcm of their

denominators). If B := max1≤i≤r ‖bi‖, then the algorithm performs in time O
((

5
4

)4r3
d log(B)

)
and

returns an output (b1, · · · , br) with integer components of size O(r4(r log(r) + log(B))). In the case of I

(d = r = 4), since it is given by a Z-basis expressed in terms of 1, i, j, k with a basis of size polynomial,

this algorithm will perform in polynomial time in log(p) and returns an output of polynomial size in

log(p).

Now, given a Minkowski reduced basis (α1, · · · , α4) of I, we look for δ :=
∑4
i=1 aiαi with integers

ai ∈ J−m ; mK for m ∈ N∗ well chosen. Let qI := nrd / nrd(I). We argue that qI(δ) = O(m2√p)
heuristically, and qI(α) = O(m2p2) in the worst case. Indeed, by [43, Teil I. § 7] the norms of the αi are

the successive minimas of the lattice:

∀1 ≤ i ≤ 4, ‖αi‖ = λi(I) := min{‖vi‖ | v1, · · · , vi ∈ I linearly independent ‖v1‖ ≤ · · · ≤ ‖vi‖}.

By Minkowski’s second theorem, it follows that:

2

3

Covol(I)

Vol(B4)
≤

4∏
i=1

‖αi‖ ≤ 16
Covol(I)

Vol(B4)
,

where B4 is the unit ball, so that Vol(B4) = π2

2 and:

Covol(I) = [O : I]
»

disc(R) = nrd(I)2p,

so that:
p2

9π4
≤

4∏
i=1

qI(αi) ≤
64p2

π4
.

Hence comes the heuristics qI(αi) = O(
√
p), which is experimentally verified in [27]. Hence the heuristics

qI(δ) = O(m2qI(α4)) = O(m2√p) and the output ideal I ′ := Iδ/nrd(I) has norm N := qI(δ) = O(m2√p)
.

We heuristically assume that the distribution of the random variable qI(δ) given by sampling integers

a1, · · · , a4 ∈ J−m ; mK is statistically indistinguishable from the uniform distribution on the interval
q
qI(α1) ; m2qI(α4)

y
, so for m large enough, e.g. m = dlog(p)e, this interval contains prime numbers.

Due to the distribution of prime numbers in Z, qI(δ) reaches a prime number after O(log(m2qI(α4))) =

O(log(p)) operations.

Step b

Since N = nrd(I ′) = gcd{nrd(α)|α ∈ I ′}, there exists α ∈ I ′ such that N2 - nrd(α). Finding such an

α ∈ I ′ is sufficient. Indeed, in that case, α 6∈ RN since nrd(RN) = N2, so that RN ( RN + Rα ⊆
I ′. It follows that [I ′ : RN + Rα]|[I ′ : RN ] and [I ′ : RN + Rα] < [I ′ : RN ] but [I ′ : RN ] =

nrd(RN)2/ nrd(I ′)2 = N2 so [I ′ : RN +Rα] ∈ {1, N}. Since [I ′ : RN +Rα] is a square, we must have

[I ′ : RN +Rα] = 1 i.e. I ′ = RN +Rα.

Finding a suitable element α can be done in O(1) sampling operations on a basis of I ′ with small

coefficients (e.g. of size O(log(p))). Indeed, by similar combinatoric arguments we gave above, we get

that every α ∈ I ′ such that N2|nrd(α) are in RN , but [I ′ : RN ] = N2 so the probability that N2|nrd(α)

is negligible.

Step c

We fix S1 a powersmooth number (actually, other conditions could be required) and look for β1 ∈ R of

norm NS1. We restrict to β1 ∈ R + jR to use the fact that R⊥ = jR. Indeed, writing R = Z[ω] for a
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given generator ω ∈ R, and writing β1 = x1 + ωy1 + j(x2 + ωy2) with x1, y1, x2, y2 ∈ Z, we get that:

nrd(β1) = f(x1, y1) + pf(x2, y2),

where f is the quadratic form f(x, y) := x2 − txy + s with t := Tr(ω) and s = nrd(ω), of discriminant

∆ := t2 − 4s = disc(R). By choice of ω, we can always assume that t = −1 when ∆ ≡ 1 [4] and t = 0

when ∆ ≡ 0 [4], so that f is the principal form.

Let M := NS1. Solving the equation nrd(β1) = M will be done in two steps: first finding x2, y2 ∈ Z
such that f(x1, y1) = M − pf(x2, y2) has a solution, and second solve the equation in x1, y1 ∈ Z.

The first condition to find a solution is pf(x2, y2) < M . Let Φ be an increasing function such that

|∆| < Φ(M) < M
p . To make sure this condition holds, we take S1 big enough S1 = Ω(

√
p), so that

M = Ω(p), and Φ(x) = log(x)e, where e ∈ N is such that |∆| = o(log(p)e). We restrict the sampling of

x2, y2 to the interval
r
−b
√

Φ(M)/|∆|c+ 1 ; b
√

Φ(M)/|∆|c − 1
z

, so that:

f(x2, y2) =

Å
x2 −

t

2
y2

ã2

+
|∆|
4
y2

2 < Φ(M)

Ç
1

|∆|

Å
1− t

2

ã2

+
1

4

å
≤ Φ(M),

since t ∈ {−1, 0} and |∆| ≥ 3, and finally pf(x2, y2) < pΦ(M) < M .

To find a solution (x1, y1) to the equation :

f(x1, y1) = M − pf(x2, y2) (?)

(and check whether there exists one or not), we use an algorithm introduced in [41, § 46, pp. 73-75] based

on Gauss reduction of integer quadratic forms (see Algorithm 2 in Appendix B.1), which is polynomial

with the chosen input values. Let u := M − pf(x2, y2). Then (?) admits a solution if and only if ∆ is a

square mod 4u and the form gu(x, y) := ux2 +vxy+wy2 is equivalent to f (where v ∈ J0 ; 2uK is a square

root of ∆ mod 4u and v2−4uw = ∆). Since ∆ ≡ 0, 1 [4], the condition ∆ is a square mod 4u is equivalent

to ∆ is a square mod u. In order to be able to find a square root v of ∆ by Tonelli-Shanks algorithm [28,

Algorithm 1.5.1], we require u to be prime. By Dirichlet’s arithmetic progression theorem, the density of

primes congruent to M mod p is 1
p−1 , which is very close to the density of integers congruent to M mod p

(which is 1
p ). Hence, we can heuristically assume that the probability to find u ∈ [M − pΦ(M),M ] prime

is approximately 1/ log(M) when we sample x2, y2. Assuming the distribution of the class [gu] among

the classes of forms of discriminant ∆ is uniform when sampling x2, y2, we expect to find a solution

after h(∆) log(M) tests, so in a polynomial time since ∆ is polynomial and solving (?) can be done in

polynomial time.

Step d

We look for β2 ∈ jR such that α ≡ β1β2 mod RN , or equivalently, we look for an equivalence class

[β2] ∈ jR/RN such that I ′/RN = (R/RN)[β1][β2]. We have a group action of (R/NR)× on the proper

non-zero left-ideals of R/NR by multiplication on the right. Hence, restricting our search to invertible

elements, in order to find [β2] ∈ [j](R/NR)×, I ′/NR needs to be in the orbit of (R/NR)[β1][j].

Lemma B.6. (i) R/NR ' (R+ jR)/N(R+ jR) 'M2(Z/NZ).

(ii) The proper non-zero left-ideals of M2(Z/NZ) are all principal and generated by a matrix of the

form:

Ma,b :=

(
a b

0 0

)
,

with (a, b) ∈ (Z/NZ)2 \ {0}.

Moreover, for (a, b), (a′, b′) ∈ (Z/NZ)2 \ {0}, the matrices Ma,b and Ma′,b′ generate the same ideal
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if and only if the equality of classes (a : b) = (a′ : b′) holds in P1(Z/NZ) (∃λ ∈ (Z/NZ)∗, (a, b) =

λ · (a′, b′)). Hence, there are N + 1 proper non-zero left-ideals in M2(Z/NZ).

(iii) There exists an orbit of at least N − 2 elements under the action of (R/NR)× on proper left-ideals

of R/NR.

Proof. (i) We have Bp,∞ ⊗ QN ' M2(QN ) since N does not ramify in Bp,∞. Hence, the inclusion

R ⊆ Bp,∞ induces an injection R ↪→ M2(ZN ). Taking the quotient modulo N , we get an injection

R/NR ↪→M2(Z/NZ). But |R/NR| = N4 = |M2(Z/NZ)| so R/NR 'M2(Z/NZ).

A similar reasoning ensures that (R+ jR)/N(R+ jR) 'M2(Z/NZ) as well.

(ii) Let I be a proper non-zero left-deal of M2(Z/NZ). Then I contains a non-zero element M .

M has rank 1, otherwise it would be invertible and we would have I = M2(Z/NZ), contradicting the

properness of I. Since I is a left-ideal, we can change M by left operations. Hence, swapping rows if

necessary so that the first is non-zero and eliminating the second, we get M of the desired form M = Ma,b

for (a, b) ∈ (Z/NZ)2 \ {0}.
If M ′ ∈ I is another non-zero matrix of I, we get that M ′ = PMa′,b′ for (a′, b′) ∈ (Z/NZ)2 \ {0} and

P ∈ GL2(Z/NZ). If (a′, b′) and (a, b) where linearly independent, swapping the rows Ma′,b′ = P−1M ′ ∈ I
and adding Ma,b, we get that: (

a b

a′ b′

)
∈ I ∩GL2(Z/NZ),

contradicting the properness of I. Hence M ′ = PMa′,b′ = λPMa,b where λ ∈ (Z/NZ)∗ is such that

(a′, b′) = λ · (a, b), so I is principal and generated by Ma,b. We also have obtained that every matrix

Ma′,b′ generating I verifies (a : b) = (a′ : b′), completing the proof of point (ii).

(iii) N does not ramify in R since N - |disc(R)|. Indeed, |disc(R)| is polynomial while N = Ω(
√
p),

according to the heuristics of step c. Hence (R/NR) ' FN2 if N is inert in R and (R/NR) ' (Z/NZ)2

if N splits in R. It follows that |(R/NR)×| ≥ (N − 1)2, so that all elements of (R/NR)× are not in

(Z/NZ)∗.

Let [µ] ∈ (R/NR)× \ (Z/NZ)∗. Using the isomorphism R/NR 'M2(Z/NZ), we identify [µ] with a

matrix: (
a b

c d

)
∈ GL2(Z/NZ).

Let [λ] ∈ R/NR corresponding to the matrix M1,0. Then, [λ]([µ] + ν) corresponds to Ma+ν,b for all

ν ∈ Z/NZ but [µ]+ν ∈ (R/NR)× if and only if [µ]+ν is invertible i.e. ν is not a root of the characteristic

polynomial of [µ]. So ν can take at least N − 2 values.Since ν ∈ Z/NZ 7−→ (a + ν : b) ∈ P1(Z/NZ) is

injective, it follows that the orbit of [λ] has at least N − 2 elements.

By Lemma B.6, (R/NR)[β1][j] and I ′/NR will be in the same orbit with probability ≥ N−2
N+1 , which

is overwhelming so the equation α ≡ β1β2 mod RN will almost always admit a solution β2 ∈ jR. If it

is not the case, we can always repeat steps b and c. The equation can be solved in polynomial time in

log(p), simply using linear algebra in a Z-basis of R.

Step e

We are looking for λ ∈ J0 ; N − 1K and γ ∈ R such that β′2 := λβ2 +Nγ has powersmooth norm S2. We

restrict to γ ∈ R+ jR. Let us write β2 := j(C+Dω) and γ := a+ bω+ j(c+dω) with C,D, a, b, c, d ∈ Z.

We want to solve the equation:

S2 = nrd(β′2) = N2f(a, b) + pf(λC +Nc, λD +Nd) (?),

where λ, a, b, c, d ∈ Z are unknown, where f(x, y) := x2 − txy + sy2 with t := Tr(ω) and s := nrd(ω).
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First, we reduce this equation modulo N : λ2pf(C,D) ≡ S2 [N ]. This equation has a solution if and

only if pf(C,D)S2 is a square modulo N , so we may chose S2 to ensure it and find λ 6≡ 0 [N ] in time

O(log4(N)) = O(log4(p)) by Tonelli-Shanks Algorithm [28, Algorithm 1.5.1].

Now reducing (?) mod N2 and factoring by N , we get:

λ(2C − tD)c+ λ(2sD − tC)d ≡ S2 − λ2pf(C,D)

N
[N ] (??).

We have λ 6≡ 0 [N ], and (2C − tD)(2sD − tC) 6≡ 0 [N ] with overwhelming probability (and if it is the

case, we can always repeat steps c and d until this condition is satisfied). As a consequence, the equation

above has N solutions modulo N and we can determine all of them in time O(log2(N)) = O(log2(p))

using extended Euclid algorithm. We pick one of them at random satisfying:

|λC +Nc| ≤ N2 and |λD +Nd| ≤ N2,

so that:

f(λC +Nc, λD +Nd) ≤ N2

ÇÅ
1− t

2

ã2

+
|∆|
4

å
≤ N2 9 + |∆|

4
≤ |∆|N2.

To make sure S2 − pf(λC + Nc, λD + Nd) > 0, we may have chosen S2 > p|∆|N2 from the beginning.

We repeat the sampling of c, d among the solutions of (??) until (S2 − pf(λC + Nc, λD + Nd))/N2 is

a prime. Assuming the distribution of the random values we get is fairly uniform, we find a prime in

approximately log(p|∆|N2) sampling operations. We then solve:

f(a, b) :=
S2 − pf(λC +Nc, λD +Nd)

N2
,

using Algorithm 2. If this equation has no solution, we repeat the sampling again. On the hole, we need

h(∆) log(p|∆|N2) = Õ(log(p)) test to find a solution. Hence, step e is polynomial.

Step f

Let β := β1β
′
2. Then, β ≡ λβ1β2 mod RN ≡ λα mod RN . Since RN ⊆ I ′, it follows that β ∈ I ′.

Hence J := I ′β/N is an integral left-ideal of norm nrd(J) = nrd(β)/N = S1S2 by Lemma B.1, which is

powersmooth.

B.3 Effective Deuring correspondence

Given an elliptic curve E0 of known endomorphism ring R0 admitting an `-compact representation and

a left ideal I ⊆ R0 of powersmooth norm prime to `, we want to compute the isogeny φI : E0 −→ E of

kernel E0[I] defined by Deuring correspondence (see Appendix B.1). The algorithm we present here is

due to [44]. The authors chose to present it in the case of Example B.3 (p ≡ 3 [4], E0 : y2 = x3 + x and

R0 =
¨
1, j, i+j2 , 1+k

2

∂
). Our presentation is simply a generalization.

We write I := 〈α1, α2, α3, α4〉 where the αi are `-useful and concise, i.e. written in an `-useful and

concise Z-basis of R0 (as defined in Paragraph 3.1.1) with coefficients of polynomial size in log(p). In

particular, the αi can be evaluated in polynomial time in log(p) at any point of E0 of order prime to `

defined over a field extension of Fp of polynomial degree in log(p).

Let us write nrd(I) :=
∏r
i=1 `

ei
i , with `1, · · · , `r prime numbers 6= `, p and e1, · · · , er ∈ N∗. We assume

that the `eii are all bounded by an integer B ∈ N∗. Since | ker(φI)| = deg(φI) = nrd(I) is exponentially

large in log(p), one cannot describe φI via its kernel or formulas. The algorithm represents φI as a chain

of isogenies φi : Ei−1 −→ Ei for i ∈ J1 ; rK such that deg(φi) = `eii for all i ∈ J1 ; rK and Er = E.

Factoring I by integers if necessary, we may assume that E[I] is cyclic. Then, for all i ∈ J1 ; rK, there

exists Ri ∈ E0[`eii ] of order `eii such that αk(Ri) = 0 for all k ∈ J1 ; 4K. Then
∑r
i=1Ri is of E0 order
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∏r
i=1 `

ei
i = nrd(I) and in E0[I] so it generates E0[I]. We may then define the φi as follows: φ0 := [1]E0

and for all i ∈ J1 ; rK, ker(φi) = 〈φi−1 ◦ · · · ◦ φ0(Ri)〉. (using Vélu’s formulas [11]). Indeed, by induction,

for i ∈ J1 ; rK, φi−1 ◦ · · · ◦ φ1(Ri) has order `eii since φi−1 ◦ · · · ◦ φ0 has degree
∏i−1
j=1 `

ej
j , which is prime

to `eii so φi has degree `eii . Moreover, ker(φr ◦ · · · ◦ φ0) ⊇ 〈
∑r
i=1Ri〉 and we have an equality by a degree

argument so that φI = φr ◦ · · · ◦ φ0.

Hence, the following algorithm:

Algorithm 4: Effective Deuring correspondence

Data: E0 an elliptic curve, R0, an `-compact representation of End(E0) and I ⊆ R0 a left-ideal of

powersmooth norm nrd(I) =
∏r
i=1 `

ei
i prime to ` and p, with a concise Z-basis (α1, · · · , α4).

Result: The isogeny associated to I: φI : E0 −→ E, expressed as a product φI = φr ◦ · · · ◦ φ1,

with deg(φi) = `eii for all i ∈ J1 ; rK.
1 φ0 := [1]E0

;

2 for i = 1 to r do

3 Find (Pi, Qi), a Z/`eii Z-basis of E0[`eii ] using Algorithm 5;

4 Find a, b ∈ (Z/`eii Z) such that Ri := aPi + bQi has order `i and αk(Ri) = 0 for k ∈ J1 ; 4K.
This can be done by finding the discrete logarithm of (αk(Qi))1≤k≤4 in the group E4

0 with

basis (αk(Pi))1≤k≤4 (in this case b = 1), and if it fails, finding the discrete logarithm of

(αk(Pi))1≤k≤4 with basis (αk(Qi))1≤k≤4 (in this case a = 1);

5 Compute Si := φi−1 ◦ · · · ◦ φ0(Ri);

6 Compute the isogeny φi : Ei−1 −→ Ei with kernel 〈Si〉 by Vélu’s formulas;

7 end

8 Return φ1, · · · , φr;

Algorithm 5: Computing the basis of a torsion subgroup

Data: E0/Fp2 an elliptic curve and N a (relatively small) integer prime to p.

Result: A Z/NZ-basis (P,Q) of E0[N ].

1 Find a root x ∈ Fp of the N -th division polynomial Ψ2
N (X);

2 Find y ∈ Fp such that (x, y) ∈ E0 and set P := (x, y);

3 Compute order(P );

4 while order(P ) 6= N do

5 Find a new root x ∈ Fp of Ψ2
N (X);

6 Find y ∈ Fp such that (x, y) ∈ E0 and set P := (x, y);

7 Compute order(P );

8 end

9 Find a new root x′ ∈ Fp of Ψ2
N (X);

10 Find y′ ∈ Fp such that (x′, y′) ∈ E0 and set Q := (x′, y′);

11 Compute order(eN (P,Q));

12 while order(eN (P,Q)) 6= N do

13 Find a new root x′ ∈ Fp of Ψ2
N (X);

14 Find y′ ∈ Fp such that (x′, y′) ∈ E0 and set Q := (x′, y′);

15 Compute order(eN (P,Q));

16 end

17 Return (P,Q);
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B.4 Discrete logarithm and basis computation in finite abelian

groups

In this section, we present some algorithms due to Sutherland [45] to compute discrete logarithms and

basis of finite abelian groups, with the intent to apply them to Cl(On).

The first three paragraphs are general and apply to any finite abelian group. However, the case of

Cl(On) is much simpler because this group is either cyclic of the product of Z/`Z and a cyclic group.

B.4.1 Discrete logarithm in a basis

Throughout this paragraph, if G is a finite group and g ∈ G, we shall denote by |g| the order of g. If

F := (g1, · · · , gr) ∈ Gr and x ∈ Zr, we shall denote:

Fx :=
r∏
i=1

gxii .

Definition B.7. Let G be a finite abelian group. We say that the family F := (g1, · · · , gr) ∈ Gr is free

if for all x ∈ Zr,
∏r
i=1 g

xi
i = 1 if and only if |gi||xi for all i ∈ J1 ; rK.

A basis of G is a free family B := (g1, · · · , gr) ∈ Gr generating G. Equivalently, B is a basis of G if

for every element h ∈ G there exists a unique x ∈
∏r
i=1 J0 ; |gi| − 1K such that Bx = h.

A basis is primitive if it does not contain a trivial element: gi 6= 1 for all i ∈ J1 ; rK.

Definition B.8. Let h ∈ G and B := (g1, · · · , gr) ∈ Gr be a basis of G. The discrete logarithm of h in the

basis B, denoted by DLB(h) is the unique tuple x ∈
∏r
i=1 J0 ; |gi| − 1K (or equivalently, x ∈

∏r
i=1Z/|gi|Z)

such that Bx = h.

Definition B.9. A finite abelian group G is effective if:

(i) Given a, b ∈ G, we can compute a · b ∈ G.

(ii) Given a ∈ G, we can compute a−1 ∈ G.

(iii) Given a, b ∈ G, we can test whether a = b.

(iv) |G| and its decomposition into primes are known.

In the following, we fix an effective finite abelian group G, a basis B := (g1, · · · , gr) of G and h ∈ G.

We present an algorithm to compute DLB(h). Let N := |G| and its decomposition into primes:

N =
s∏
i=1

pαii .

For all i ∈ J1 ; sK, let Ni := N
p
αi
i

and:

Gi := {gNi | g ∈ G}.

Lemma B.10. (i) We have two group isomorphisms:

φ : G
∼−→

∏s
i=1Gi

g 7−→ (gNi)1≤i≤s
and

ψ :
∏s
i=1Gi

∼−→ G

(gi)1≤i≤s 7−→
∏s
i=1 gi.

It follows that Gi is the pi-Sylow subgroup of G for all i ∈ J1 ; sK.

(ii) For e ∈ Z, let Ge := {ge | g ∈ G} and B(e) := (ge1, · · · , ger). Then B(e) is a basis of Ge. In particular,

Bi := B(Ni) = (gNi1 , · · · , gNir ) is a basis of Gi for all i ∈ J1 ; sK.
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(iii) To compute x := DLB(h), it suffices to compute xi := DLBi(h
Ni) for all i ∈ J1 ; sK. We then

recover each component xj of x (j ∈ J1 ; rK) by the Chinese remainder theorem:

xj ≡ xi,j [pαii ].

Proof. (i) Let g ∈ G such that gNi = 1 for all i ∈ J1 ; sK. Then |g||Ni for all i ∈ J1 ; sK. But

gcd(N1, · · · , Ns) = 1, so that |g| = 1 and g = 1. Hence φ is injective, so
∏s
i=1 |Gi| ≥ |G| .

If (gi)1≤i≤s ∈
∏s
i=1Gi is such that

∏s
i=1 gi = 1, then we get that

∏s
j=1 g

Ni
j = gNii = 1 for all

i ∈ J1 ; sK, since |gj ||p
αj
j for all j ∈ J1 ; sK. Hence |gi||Ni and |gi||pαii so gi = 1 because Ni and pαii are

coprime. Hence ψ is injective. It follows that
∏s
i=1 |Gi| = |G| so that φ and ψ are isomorphisms.

(ii) Trivially, B(e) generates Ge and furthermore, if x ∈ Zt is such that B(e)x = 1 then |gj ||exj for all

j ∈ J1 ; rK, since B is a basis of G, so that |gej | = |gj |/ gcd(e, |gj |)|e/ gcd(e, |gj |)xj . Since |gj |/ gcd(e, |gj |)
and e/ gcd(e, |gj |) are coprime, we get that |gej ||xj , for all j ∈ J1 ; rK. Whence (ii).

(iii) For all x ∈ Zr, we have:

Bx = h⇐⇒ φ(Bxh−1) = 1⇐⇒ ∀i ∈ J1 ; sK , BNix = Bxi = hNi .

By unicity of the discrete logarithm, it follows that for all i ∈ J1 ; sK and j ∈ J1 ; rK, we have xj ≡
xi,j [pαii ], where xi := (xi,j)1≤j≤s := DLBi(h

Ni).

With the previous lemma, we reduce our computation to the computation of discrete logarithms in p-

groups, so we can assume that G is a p-group. Let e(G) be the exponent of G and σ = σ(G) := logp(e(G)).

We show how to reduce our computation of discrete logarithms in G to the computation of σ discrete

logarithms in a p-subgroup of exponent p. Indeed, if x = (x1, · · · , xr) := DLB(h), we can write in basis p:

∀i ∈ J1 ; rK , xi :=

σi−1∑
k=0

xi,σi−1−kp
k =

σi−1∑
k=0

xi,kp
σi−1−k,

with σi := logp(|gi|) ≤ σ and xi,k ∈ J0 ; p− 1K for all k ∈ J0 ; σi − 1K. It follows that for all l ∈
J0 ; σ − 1K:

hp
l

= Bp
lx =

r∏
i=1

g

∑σi−1

k=0
xi,σi−1−kp

k+l

i =
r∏
i=1

g

∑σi−1

k=0
xi,kp

σi−1−k+l

i =
r∏
i=1

g
pσi−1

∑min(l,σi−1)

k=0
xi,kp

l−k

i ,

i.e.

hp
l

r∏
1≤i≤r
l≤σi−1

g
−pl
∑l−1

k=0
xi,kp

σi−1−k

i

︸ ︷︷ ︸
hl

=
r∏

1≤i≤r
l≤σi−1

g
pσi−1xi,l
i .

Hence, assuming that the xi are known for l ≥ σi and that the xi,k are known for l ≤ σi − 1 and

k ∈ J0 ; l − 1K, we can compute the xi,l for l ≤ σi − 1 as:

(xi,l)l≤σi−1 := DLCl(hl),

with:

Cl := (gp
σi−1

i )l≤σi−1.

Hence, we reduced to the case where G is a p-group of exponent e(G) = p. This can be done in time

O((
√
p+ 1)r), for instance with Baby-step, Giant-step algorithm.

Lemma B.11. Algorithm 6 is correct. This algorithm performs at most:

mr + 2
(⌊ p
m

⌋
+ 1
)r
− 2r − 3
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Algorithm 6: Multivariate Baby-step Giant-step in a p-group of exponent p

Data: G an effective abelian p-group of exponent p, a basis B := (g1, · · · , gr) of G and h ∈ G.
Result: DLB(h).

1 Set m← d√pe;
2 Compute

∏r
i=1 g

ji
i for all (j1, · · · , jr) ∈ J0 ; m− 1Kr and store the result in a hash table;

3 Compute h
∏r
i=1 g

mki
i for (k1, · · · , kr) ∈

q
0 ;

⌊
p
m

⌋yr
until we find a collision

h
∏r
i=1 g

mki
i =

∏r
i=1 g

ji
i for (j1, · · · , jr) ∈ J0 ; m− 1Kr;

4 Return (ji −mki)1≤i≤r modulo p;

multiplications and
(⌊

p
m

⌋
+ 1
)r

lookups in a hash table. Hence, assuming the table lookups and group

operations have constant cost, the algorithm performs in O((
√
p+ 1)r).

Proof. To prove the corectness it suffices to prove that a collision is found on line 3, i.e. that the indices

ji −mki cover Z/pZ. Since they cover the interval
q
−m

⌊
p
m

⌋
; m− 1

y
of cardinality:

m
⌊ p
m

⌋
+m ≥

( p
m
− 1
)
m+m = p,

they indeed cover Z/pZ and the algorithm is correct.

On line 2, the algorithm computes:

Sr := {
r∏
i=1

gjii | (j1, · · · , jr) ∈ J0 ; m− 1K} .

Let µ(Sr) the number of multiplications necessary to compute Sr. Knowing Sr−1, one can compute Sr

by computing 1, gr, g
2
r , · · · , gm−1

r (m − 2 multiplications) and multiplying each element of Sr \ {1} by

these elements ((m− 1)(|Sr−1| − 1) multiplications). It follows that:

µ(Sr) = (m−1)(|Sr−1|−1)+m−2+µ(Sr−1) = (m−1)(mr−1−1)+m−2+µ(Sr−1) = (m−1)mr−1−1+µ(Sr−1).

Since µ(S1) = m− 2, it follows that:

µ(Sr) =
r−1∑
k=1

((m− 1)mk − 1) +m− 2 = m(mr−1 − 1)− (r − 1) +m− 2 = mr − r − 1.

Similarly, computing
∏r
i=1 g

mki
i for all (k1, · · · , kr) ∈

q
0 ;

⌊
p
m

⌋yr
requires:(⌊ p

m

⌋
+ 1
)r
− r − 1

multiplications. Taking into account the multiplications by h, we get:(⌊ p
m

⌋
+ 1
)r
− r − 1 +

(⌊ p
m

⌋
+ 1
)r
− 1 = 2

(⌊ p
m

⌋
+ 1
)r
− r − 2

multiplications in line 3. We also have as many table lookups as elements computed in line 3, hence(⌊
p
m

⌋
+ 1
)r

table lookups. This completes the proof.

Assuming again that G is general (not a p group), the following algorithm computes the discrete

logarithm DLB(h) in G.

Proposition B.12. Algorithm 7 is correct and computes DLB(h) with:

O

(
s∑
i=1

σi((
√
pi + 1)r + r log(N)) + rs log2(N)

)
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Algorithm 7: Multivariate discrete logarithm in an effective finite abelian group

Data: G an effective abelian group, N := |G| and its decomposition into primes N :=
∏s
i=1 p

αi
i , a

basis B := (g1, · · · , gr) of G and h ∈ G.
Result: DLB(h).

1 for i = 1 to s do
2 Ni ← N

p
αi
i

;

3 Bi = (b1, · · · , br)← (gNi1 , · · · , gNir );

4 hi ← hNi ;
5 for j = 1 to r do

6 σi,j ← logpi |g
Ni
j |;

7 end
8 σi ← max1≤i≤r σi,j ;
9 xi ← (0)1≤j≤r;

10 for l = σi − 1 to 0 do

11 hi,l ← hp
l

i

∏r
1≤j≤r
l≤σi,j−1

b
−plixi,j
j ;

12 Ci,l ← (b
p
σi−1

i
j ) 1≤j≤r

l≤σi,j−1

;

13 y ← DLCi,l(hi,l) (using Algorithm 6);

14 (xi,j) 1≤j≤r
l≤σi,j−1

← (xi,j + p
σi,j−1−l
i yj) 1≤j≤r

l≤σi,j−1

;

15 end

16 end
17 Compute x ∈

∏r
j=1 J0 ; |gj | − 1K such that xj ≡ xi,j [pαii ] for all i ∈ J1 ; sK and j ∈ J1 ; rK using

Chinese remainder theorem [28, Algorithm 1.3.12];
18 Return x;

elementary operations, where N := |G| =
∏s
i=1 p

αi
i and σi is the logarithm in basis pi of the exponent of

the pi-Sylow of G for all i ∈ J1 ; sK.

Proof. The correctness follows directly from what we explained above.

For the complexity, we count the operations line by line. Line 2 is negligible, lines 3 and 4 require r+1

exponentiations by Ni, that can be performed with log(Ni) multiplications for all i ∈ J1 ; sK. Hence, line

3 and 4 cost:

O

(
(r + 1)

s∑
i=1

log(Ni)

)
multiplications. Computing the exponents on line 6 requires at most σir exponentiations by pi for all

i ∈ J1 ; sK, for a total cost of:

O

(
r

s∑
i=1

σi log(pi)

)
multiplications. Line 11 requires at most r exponentiations of order of magnitude pσii , r multiplications

and an exponentiation by pli for all i ∈ J1 ; sK and l ∈ J0 ; σi − 1K, for a total cost of:

O

(
s∑
i=1

σi−1∑
l=0

(rσi log(pi) + l log(pi) + r)

)
= O

(
rs

s∑
i=1

σi(1 + σi log(pi)) +
s∑
i=1

σi(σi − 1)

2
log(pi)

)

multiplications. The Ci,l on line 12 can be computed outside of the loop on l and inside the loop on i for

a total cost of:

O

(
r

s∑
i=1

(σi − 1) log(pi)

)
multiplications. Line 13 requires the computation of a discrete logarithm in pi-group of exponent pi,

whose complexity is O(
√
pi + 1)r) (by Lemma B.11) for all i ∈ J1 ; sK and j ∈ J0 ; σi − 1K, for a total
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cost of:

O

(
s∑
i=1

σi(
√
pi + 1)r

)
elementary operations. Line 14 is negligible. Finally, line 17 requires the computation of r Chinese

remainders with s variable integers of order of magnitude N , using Algorithm [28, Algorithm 1.3.12],

hence applying rs times extended Euclid’s algorithm for a total cost of O(rs log2(N)). Taking the

dominant terms into account only, we get the announced time complexity.

B.4.2 Basis computation from a generating set

Let us recall the notations of the previous paragraph: let G be an effective finite abelian group, N := |G|
and its decomposition into primes N =

∏s
i=1 p

αi
i . For all i ∈ J1 ; sK, let Ni := N

p
αi
i

and Gi := {gNi | g ∈
G}.

Lemma B.13. (i) Let S := {s1, · · · , st} be a generating set of G. Then, for all i ∈ J1 ; sK, S(Ni) :=

{sNi1 , · · · , sNit } generates Gi.

(ii) Let Bi be a basis of Gi for all i ∈ J1 ; sK. Then, B :=
∨r
i=1 Bi, the concatenation of the Bi, is a basis

of G.

(iii) If G is a p-group G, then all of its basis have the same cardinality, which is called the rank of G.

Proof. (i) Trivial.

(ii) It follows directly from the fact that:

ψ :
∏s
i=1Gi

∼−→ G

(gi)1≤i≤s 7−→
∏s
i=1 gi.

is an isomorphism, as proved in point (i) of Lemma B.10.

(iii) Let B := {g1, · · · , gr} be a primitive basis of G. Then, all the orders |gi| are non-trivial powers

of p.Without loss of generality, we can reorder the gi, so that |g1|| · · · ||gr| and we trivially have:

G '
r∏
i=1

(Z/|gi|Z)

via the isomorphism x ∈
∏r
i=1(Z/|gi|Z) 7−→ Bx ∈ G. Hence, |g1|, · · · , |gr| are the invariant factors of G

so there are unique and in particular, their number is fixed and depends only on G.

The previous lemma indicates that it suffices to find basis of the pi-Sylow subgroups Gi of G to

compute a basis of G. In the following, we assume that G is a p-group.

Definition B.14. Let B := (g1, · · · , gr) be a free family of G and h ∈ G. We denote by DL∗B(h) the

tuple (x, e) ∈ Zu×Z such that e ∈ N is the smallest integer such that hp
e ∈ 〈B(pe)〉 = 〈gp

e

1 , · · · , gper 〉 and

x := DLB(pe)(hp
e

), so that hp
e

= Bpex.

Lemma B.15. Let B := (g1, · · · , gr) be a free family of G, ni := logp(|gi|) for all i ∈ J1 ; rK, m0 :=

min1≤i≤r ni, m := max1≤i≤r ni, (x, e) := DL∗B(h) and h′ := hB−x. Suppose that |h| ≤ pm. Then:

(i) |h′| = pe.

(ii) If furthermore |h′| ≤ pm0 , then B′ := B ∨ (h′) is a free family.

Proof. (i) By the definition of DL∗B(h), we have hp
e

= Bpex, so that h′
pe

= (hB−x)p
e

= 1. If h′
pe
′

= 1 for

e′ < e, then we would have hp
e′

= Bpe
′
x and e would not be minimal for this equality. Hence, |h′| = pe.
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(ii) We assume that |h′| ≤ pm0 and that B′ := B∨(h′) is not free. Then, we have a non-trivial relation

h′
k

= By for k ∈ Z \ {0} and y ∈ Zr \ {0}. Let us write k := k′pf with k ∈ Z \ {0} and f ∈ J0 ; e− 1K
such that gcd(k′, p) = 1. Let l be an inverse of k′ modulo pe−f . Then, we get h′p

f

= Bz with z := ly.

pf - z. Indeed, otherwise, set v := x+ z/pf . Then:

hp
f

= (h′Bx)p
f

= Bz+p
fx = Bp

fv,

but f < e, so it contradicts the minimality of e.Hence, pf - z.
We also have m0 ≥ e > f since |h′| ≤ pm0 , so that:

1 = h′
pm0

= Bp
m0−fz

and consequently, pni |pm0−fzi so pm0 |pm0−fzi and pf |zi for all i ∈ J1 ; rK. Contradiction. Hence, B′ is

free.

Our basis computation algorithm follows from the previous lemma. Assume that we already have

constructed the free family B := (g1, · · · , gr) and that we have a generating set S := {s1, · · · , st} (that

is not free in general) such that 〈B ∪ S〉 = G. We assume that |si| ≤ pm0 for all i ∈ J1 ; tK. Let

(xi, ei) := DL∗B(si) for all i ∈ J1 ; tK. Then, ei ≤ logp(|si|) ≤ m0 and s′i := siB−xi has order ei for

all i ∈ J1 ; tK. We select i0 ∈ J1 ; tK such that ei0 is maximal, set gr+1 := s′i0 , B′ := B ∨ (gr+1) and

S′ := {s′1, · · · , s′t} \ {s′i0}. Then, B′ is still free by point (ii) of the lemma, we still have 〈B′ ∪S′〉 = G and

logp(|s′i|) = ei ≤ min(m0, ei0) so that our invariants from the beginning are still satisfied with B′ and S′.

Applying these principles, we can compute a basis from a generating set using the following algorithm

due to [45].

Algorithm 8: Basis computation in a p-group.

Data: G an effective abelian p-group, a generating set of G, S := {s1, · · · , st}.
Result: A primitive basis of G: B := (g1, · · · , gr).

1 B ← ∅;
2 ei ← logp(|si|) for all i ∈ J1 ; tK;
3 if ∀i ∈ J1 ; tK , ei = 0 then
4 Return B;
5 else
6 i0 ← argmax1≤i≤t ei;

7 B ← B ∨ (si0);
8 S ← S \ {si0} and t← |S|;
9 end

10 while t 6= 0 and max1≤i≤t ei > 0 do
11 for i := 1 to t, ei > 0 do
12 (xi, ei)← DL∗B(si) (try to compute DLB(pe)(hp

e

) for e := 0 to ei using Algorithm 7 until the
computation succeeds);

13 si ← siB−xi ;
14 end
15 if ∀i ∈ J1 ; tK , ei = 0 then
16 Return B;
17 else
18 i0 ← argmax1≤i≤t ei;

19 B ← B ∨ (si0);
20 S ← S \ {si0} and t← |S|;
21 end

22 end
23 Return B;
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Proposition B.16. Algorithm 8 terminates and is correct. It performs:

O(t2(σ2(
√
p+ 1)r + σrn2 log2(p)))

elementary operations, where t := |S|, pσ is the exponent of G, |G| = pn and r is the rank of G.

Proof. The algorithm terminates because the number of elements in S decreases at each iteration of the

loop, unless all the ei are zero in which case the termination is immediate. As explained above, the

algorithm respects the following loop invariant: B is a free family, 〈B ∪ S〉 = G and the orders of the

element of S are smaller than all the orders of elements of B. When the algorithm terminates, S is either

empty or equal to {1}, so B generates G and is a basis. Hence, the algorithm is correct.

Now, we compute the complexity. The order computation on line 2 requires at most tσ exponentiations

by p, each of them costing O(log(p)) group multiplications, for a total cost of O(tσ log(p)).Operations on

lines 3 to 9 are negligible. The while loop is executed at most t times (t being the initial cardinality of |S|
here). At the j-th iterations of the while loop, we have |S| ≤ t− j so we execute lines 12 and 13 at most

t− j times. Everytime it is executed, line 12 requires at most σ computations of the discrete logarithm

in a p-group with a basis of r elements so we have a complexity of:

O(σ2((
√
p+ 1)r + r log(|G|)) + σr log2(|G|)) = O(σ2(

√
p+ 1)r + σrn2 log2(p)),

using Algorithm 7. Everytime line 13 is executed, j exponentiations and j multiplications are performed,

for a cost of O(j(σ log(p) + 1)). Hence, the total cost of line 12 and 13 (counting the number of times

they are executed) is:

O

(
(σ2(
√
p+ 1)r + σrn2 log2(p))

t∑
j=1

(t− j) + (σ log(p) + 1)
t∑

j=1

j

)
= O(t2(σ2(

√
p+ 1)r + σrn2 log2(p)))

The time complexity of the algorithm follows.

B.4.3 Specialization to the case of the ideal class group Cl(On)

By Theorem A.15, Cl(On) is either cyclic or of the form (Z/`Z)× (Z/hn−1Z) with hn−1 := |Cl(On−1)|.
We want to find a basis of Cl(On) given the generating set S := {[q1], · · · , [qt]}. In that case, we do

not need to use Sutherland’s algorithm (Algorithm 8). First, we compute all the orders of the [qj ]. Then,

we build g1 ∈ Cl(On) whose order is |g1| = lcm1≤j≤t |[qj ]| (the exponent of Cl(On)). In general, one of

the [qj ] will convene. Otherwise, we may take the product of all the [qj ].

If Cl(On) is cyclic, then g1 is a generator and we are done. Otherwise, |g1| = hn−1 and to find a basis

of Cl(On), it suffices to find g2 6∈ 〈g1〉 of order `. We simply try to compute the discrete logarithm of [qj ]

with respect to g1 with Algorithm 7 (for r = 1) and stops when it fails. If it fails for j ∈ J1 ; tK, we must

have [qj ]
` ∈ 〈g1〉 so we find the discrete logarithm k := DLg1([qj ]

`). Since Cl(On) has exponent hn−1,

we must have g
khn−1/`
1 = [qj ]

hn−1 = [1], so that hn−1|khn−1/` i.e. `|k. Set k′ := k/` and g2 := [qj ]g
−k′
1 .

Then g2 is convenient.

Lemma B.17. Assume that h(OK) = 1 and that ` is relatively small. Then, given a generating set of

Cl(On) with t elements, one can compute a basis in time O(tn2) in the worst case.

Proof. To compute the orders of the [qj ], one only has to compute their exponentiation by all the divisors

of hn = |Cl(On)|. Since hn = `n−1

[O×
K

:O×1 ]

(
`−

(
∆K

`

))
, there are O(n) such divisors and each exponentiation

takes O(log(hn)) = O(n) operations. Hence, the total cost of this step is O(tn2).

Computing g1 costs O(t) operation in the worst case (multiplying all the [qj ]).
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Computing a discrete logarithm by Algorithm 7 costs O(n2) and there are t+1 such discrete logarithms

to compute in the worst case. The total complexity follows.

B.5 Lattice of relations of a finite abelian group

Given a finite abelian group G and a generating set S = {s1, · · · , st} of G, we want to compute a Z-basis

of the following lattice:

L =

{
(e1, · · · , et) ∈ Zt

∣∣∣∣∣∣
t∏

j=1

s
ej
j = 1

}
.

Using Algorithm 8, we can compute a basis B := (g1, · · · , gr) of G and then use Algorithm 7 to compute

the discrete logarithm xj := DLB(sj) for all j ∈ J1 ; tK.
We then have for all e ∈ Zt:

e ∈ L⇐⇒
t∏

j=1

s
ej
j = 1⇐⇒ B

∑t

j=1
ejxj = 1⇐⇒ ∀k ∈ J1 ; rK ,

t∑
j=1

ejxj,k ≡ 0 [|gk|]

⇐⇒ Xk · e ≡ 0 [|gk|]

with Xk := (xj,k)1≤j≤t, seen as a line vector for all k ∈ J1 ; rK and e seen as a column vector.Hence:

L =
r⋂

k=1

Lk,

with Lk := {e ∈ Zt | Xk · e ≡ 0 [|gk|]} for all k ∈ J1 ; rK. To compute L, it is useful to introduce dual

lattices.

Definition B.18. Let Λ ⊂ Rd be a full-rank lattice. Then, the dual lattice of Λ, denoted by Λ∗ is the

lattice:

Λ∗ := {x ∈ Rd | ∀y ∈ Λ, 〈x, y〉 ∈ Z},

where 〈., .〉 is the usual scalar product.

Lemma B.19. Let Λ,Λ1, · · · ,Λr ⊂ Rd be full-rank lattices. Then:

(i) If B is a Z-basis of Λ, then (BT )−1 is a Z-basis of Λ∗.

(ii) Λ∗∗ = Λ.

(iii) Suppose that
⋂r
k=1 Λk has full-rank. Then (

⋂r
k=1 Λk)

∗
=
∑r
k=1 Λ∗k.

Proof. (i) Let us write B = (b1| · · · |bd) and (BT )−1 = (b∗1| · · · |b∗d) in columns. Then, for all i, j ∈ J1 ; dK,
we have:

〈b∗i , bj〉 = bTi · bj = (B−1 ·B)i,j = δi,j ∈ Z.

It follows that Λ∗ contains (BT )−1. Conversely, let x ∈ Λ∗. Since (BT )−1 is invertible, the b∗i form a

R-basis of Rd so we can write x =
∑d
i=1 xib

∗
i with x1, · · · , xd ∈ R. Hence, for all j ∈ J1 ; dK:

〈x, bj〉 =
d∑
i=1

xi〈b∗i , bj〉 =
d∑
i=1

xiδi,j = xj ∈ Z,

so x is an integer linear combination of the b∗i and (BT )−1 is indeed a basis of Λ∗.

(ii) It follows immediately from (i).
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(iii) By (ii), it suffices to prove that
⋂r
k=1 Λk = (

∑r
k=1 Λ∗k)

∗
. Let x ∈ Rd. Then, we have:

x ∈
r⋂

k=1

Λk ⇐⇒ ∀k ∈ J1 ; rK ,∀y ∈ Λ∗k, 〈x, y〉 ∈ Z⇐⇒ ∀y ∈
r∑

k=1

Λ∗k, 〈x, y〉 ∈ Z⇐⇒ x ∈

(
r∑

k=1

Λ∗k

)∗
.

The result follows.

L has full rank since G ' Zt/L is finite so we may apply point (iii) of the previous lemma to get:

L∗ =
r∑

k=1

L∗k.

Hence, it suffices to obtain generating families of the lattices L∗k to obtain a generating family of L∗. We

then compute the HNF of the matrix of this generating family to obtain a basis C of L∗. We the easily

obtain a basis B := (CT )−1 of L.

Actually, the following lemma ensures that L∗k = |gk|−1(Z ·XT
k + |gk|Zt), so we can apply this method

to determine B.

Lemma B.20. Let v ∈ Zd, q ∈ N∗,

Λ⊥q (v) = {x ∈ Zd | 〈v, x〉 ≡ 0 [q]} and Λq(v) = {y ∈ Zd | ∃λ ∈ Z, y ≡ λ · v [q]}.

Then Λ⊥q (v)∗ = q−1Λq(v).

Proof. By Lemma B.19, points (i) and (ii), it suffices to prove that Λq(v)∗ = qΛ⊥q (v). Let x ∈ Zd.Then:

x ∈ Λq(v)∗ ⇐⇒ x ∈ (Z · v + qZd)∗ ⇐⇒ 〈v, x〉 ∈ Z and ∀y ∈ Zd, 〈qy, x〉 ∈ Z

⇐⇒ ∃x′ ∈ Zd, x =
1

q
x′ and 〈v, x′〉 ≡ 0 [q]⇐⇒ x ∈ q−1Λ⊥q (v)

This completes the proof.

Algorithm 9: Relation lattice basis computation.

Data: G an effective abelian group, a generating set of G, S := {s1, · · · , st} and a basis of G,
B = (g1, · · · , gr) (computed with Algorithm 8 for instance).

Result: A basis of the relations lattice L := {(e1, · · · , et) ∈ Zt |
∏t
j=1 s

ej
j = 1}.

1 xj := (xj,k)1≤k≤r ← DLB(sj) for j ∈ J1 ; tK;
2 Xk ← (xj,k)1≤j≤t for all k ∈ J1 ; rK;
3 m← lcm(|gj |)1≤j≤t;

4 M ←
(
m/|g1|XT

1 | · · · |m/|gr|XT
r |mIt

)
∈Mt,t+r(Z);

5 M ′ ← HNF (M) using [28, Algorithm 2.4.4];
6 C ← (M ′i,j) 1≤i≤t

r+1≤j≤r+t
;

7 B ← m(CT )−1;
8 Return B;

B.6 Kuperberg’s algorithm

The presentation of this section follows Kuperberg’s foundational article [14]. Let us consider a finite

abelian group G with multiplicative law. We define the dehedral group associated to G as the semi-direct

product:

DG := Goφ (Z/2Z),
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with φ : Z/2Z −→ Aut(G) given by φ(1)(g) := g−1 for all g ∈ G, so that DG is the set G× (Z/2Z) with

inner product given by:

∀g, g′ ∈ G, ε, ε′ ∈ (Z/2Z), (g, ε) · (g′, ε′) = (gφ(ε)(g′), ε+ ε′) = (gg′−ε, ε+ ε′).

When G is cyclic of order N , DG is isomorphic to the dihedral group of order N denoted by DN

generated by a reflection y (of order 2) and a rotation x (of order N) related by yxyx = 1. Elements

of 〈x〉 are called rotations and the others are called reflections. Similarly, when G is not cyclic, we can

set y := (1, 1) whose order is 2 and embed G in DG, so that DG is generated by y and G and for all

g ∈ G, ygyg = 1. Elements of G are called are called rotations and the others are called reflections. y is

called the standard reflection but actually, any other reflection y′ satisfies y′gy′g = 1 for all g ∈ G and

〈y′〉 ·G = DG.

Problem B.21 (Hidden Shift Problem). Let G be a group. Given f, g : G −→ S two injective functions

such that there exists s ∈ G such that g(x) = f(sx) for all x ∈ G, the problem is to determine s.

Problem B.22 (Hidden Subgroup Problem). Let G be a group. Given f : G −→ S a function such that

there exists an unknown subgroup H ⊆ G satisfying:

∀x, y ∈ G, f(x) = f(y)⇐⇒ y ∈ Hx,

hence, inducing an injective map G/H −→ S, the problem is to determine H.

Problem B.23 (Hidden Reflection Problem). Hidden reflection problem is a particular case of the hidden

subgroup problem when G is dihedral and H is generated by a reflection.

Lemma B.24. The hidden subgroup problem in a finite abelian group G is equivalent to the hidden

reflection problem in the dihedral group DG.

Proof. Let f, g : G −→ S two injective functions such that there exists s ∈ G such that g(x) = f(sx) for

all x ∈ G. Let h : DG −→ S defined as follows:

∀x ∈ G, h(x) := f(x) and h(yx) := g(x).

It follows that for all u, v ∈ DG, h(u) = h(v)⇐⇒ v ∈ Hu with H := 〈ys−1〉.
Conversely, let h : DG −→ S inducing an injective map DG/H −→ S where H is generated by a

reflection y′ ∈ DG, that we may write y′ := ys−1 with s ∈ G. Then, let f, g : G −→ S given by:

∀x ∈ G, f(x) := h(x) and g(x) := h(yx).

Then, f and g are injective and g(x) = f(sx) for all x ∈ G.

Hence, in the latter, we explain how to solve the hidden reflection problem.We start our explanation

for G cyclic: G ' Z/NZ. We shall then explain how the general case reduces to this case.

B.6.1 Hidden reflection problem in the cyclic case

In the following, we fix H := 〈yxs〉 with y the standard reflection, x a generator of the rotation subgroup

and s ∈ Z/NZ, the slope of our hidden reflection. We also fix f : DN −→ S, a function such that for all

u, v ∈ DN , f(u) = f(v) if and only if v ∈ Hu. Our goal is to find s when f is given.

We explain how operations are performed on a quantum computer using the formalism of [46, chapter

8] and the lecture notes of Dimitri Petritis [47, chapters 2 and 3], modelling quantum states as density
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operators and quantum operations as unitary operators or partial traces. We assume that S := {0, 1}e is

a set of bits.We associate to f a unitary operator Uf , defined on the Hilbert space C[DN × S] as:

∀g ∈ DN , s ∈ S, Uf |g, s〉 := |g, s⊕ f(g)〉,

where ⊕ is the bitwise addition (xor). Assuming there is a classical circuit to compute f , we can create

a quantum circuit representing Uf . Hence, our classical oracle computing f translates into a quantum

oracle computing Uf .

Let us denote for all finite sets F ⊆ E, |F 〉 ∈ C[E] the unitary vector:

|F 〉 :=
1√
|F |

∑
f∈F

|f〉.

The first step of Kuperberg’s algorithm is to prepare the system in the quantum pure state ρ0 := |ψ〉〈ψ|
where |ψ〉 := |DN 〉|0e〉 ∈ C[DN ×S]. Then, we operate by Uf and discard the output register C[S]. After

this operation, the system is in the mixed state:

ρ1 = TrC[S](Uf · ρ0 · U†f ),

defined on C[DN ].

The second step is to operate by quantum Fourier transform FN , defined on C[DN ] as follows:

∀k ∈ J0 ; N − 1K , ε ∈ {0, 1}, FN |yεxk〉 :=
1√
N

N−1∑
j=0

ωjkN |y
εxj〉,

with ωN := e
2iπ
N , leaving system be in the state:

ρ2 := FN · ρ1 · F†N ,

defined on C[DN ].

Since DN is in bijection (as a set) to the Cartesian product of y with 〈x〉, we have C[DN ] ' C[Z/2Z]⊗
C[Z/NZ], and in this decomposition, every basis vector |yεxk〉 with ε ∈ Z/2Z and k ∈ Z/NZ can be

represented as |ε〉|k〉. The third operation of Kuperberg’s algorithm is to measure the last register |k〉 of

the system ρ2.

Lemma B.25. We have:

ρ1 =
1

N

∑
g∈〈x〉

|Hg〉〈Hg|

and ρ2 =
1

2N

N−1∑
k=0

(|0k〉+ ωksN |1k〉)(〈0k|+ ω−ksN 〈1k|).

Hence, after the measurement step, the system is in the pure state:

|ψk〉 :=
1√
2

(|0〉+ ωksN |1〉).
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Proof. We have:

ρ1 = TrC[S](Uf · ρ0 · U†f ) = TrC[S](Uf |DN0e〉〈DN0e|U†f )

= TrC[S]

Ñ
1

2N

∑
g,g′∈DN

Uf |g, 0e〉〈g′, 0e|U†f

é
=

1

2N
TrC[S]

Ñ ∑
g,g′∈DN

|g, f(g)〉〈g′, f(g′)|

é
=

1

2N

∑
s∈S

∑
g,g′∈DN

〈s|f(g)〉〈f(g′)|s〉|g〉〈g′| = 1

2N

∑
s∈f(DN )

∑
g,g′∈DN

f(g)=f(g′)=s

|g〉〈g′|

=
1

2N

∑
g∈〈x〉

∑
h,h′∈H

|h〉〈h′| = 1

N

∑
g∈〈x〉

|Hg〉〈Hg|

where we used the fact that every element of DN can be uniquely written as the product of an element

of H and an element of 〈x〉, so that DN/H ' 〈x〉 and the fact that f induces a injective map DN/H '
〈x〉 −→ S.

For all k ∈ Z/NZ, we have:

FN |Hxk〉 =
1√
2
FN (|xk〉+ |yxk+s〉) =

1√
2N

N−1∑
j=0

(ωjkN |x
j〉+ ω

j(k+s)
N |yxj〉),

so that:

FN |Hxk〉〈Hxk|F†N =
1

2N

N−1∑
j=0

(ωjkN |x
j〉+ ω

j(k+s)
N |yxj〉)

N−1∑
l=0

(ω−lkN 〈xl|+ ω
−l(k+s)
N 〈yxl|)

=
1

2N

∑
0≤j,l≤N−1

(ω
(j−l)k
N |xj〉〈xl|+ ω

j(k+s)−lk
N |yxj〉〈xl|+ ω

jk−l(k+s)
N |xj〉〈yxl|

+ ω
(j−l)(k+s)
N |yxj〉〈yxl|)

and finally:

ρ2 = FNρ1F†N =
1

N

N−1∑
k=0

FN |Hxk〉〈Hxk|F†N

=
1

2N2

∑
0≤j,l≤N−1

(
N−1∑
k=0

ω
(j−l)k
N

) Ä
|xj〉〈xl|+ ωjsN |yx

j〉〈xl|+ ω−lsN |x
j〉〈yxl|+ |yxj〉〈yxl|

ä
=

1

2N2

∑
0≤j,l≤N−1

Nδj,l
Ä
|xj〉〈xl|+ ωjsN |yx

j〉〈xl|+ ω−lsN |x
j〉〈yxl|+ |yxj〉〈yxl|

ä
=

1

2N

n−1∑
k=0

Ä
|xk〉〈xk|+ ωksN |yxk〉〈xk|+ ω−ksN |xj〉〈yxk|+ |yxk〉〈yxk|

ä
=

1

2N

n−1∑
k=0

(|xk〉+ ωksN |yxk〉)(〈xk|+ ω−ksN 〈yxk|) =
1

2N

N−1∑
k=0

(|0k〉+ ωksN |1k〉)(〈0k|+ ω−ksN 〈1k|)

It is now clear that if we measure the last register C[Z/NZ] and find the value k, then the system is

in the following state right after the measurement:

I ⊗ |k〉〈k| · ρ2 · I ⊗ |k〉〈k|
Tr(I ⊗ |k〉〈k| · ρ2 · I ⊗ |k〉〈k|)

=
1

2
(|0k〉+ ωksN |1k〉)(|0k〉+ ω−ksN |1k〉),

which is a the pure state associated to:

|ψk〉 :=
1√
2

(|0〉+ ωksN |1〉),
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the last register |k〉 being omitted because it does not carry any information.

We have just described a procedure to compute states |ψk〉 = 1√
2
(|0〉+ωksN |1〉) with uniformly random

values of k ∈ Z/NZ as follows:

Algorithm 10: Procedure to produce the states |ψk〉 with k ∈ Z/NZ uniformly random.

Data: f : DN −→ S with a hidden reflection yxs and a quantum oracle to compute Uf .
Result: A state |ψk〉 together with k, for k ∈ Z/NZ uniformly random.

1 Prepare the system in the pure state ρ0 := |DN 〉|0e〉〈0e|〈DG| over the Hilbert space C[DN × S];

2 Let Uf act on ρ0 and discard the output register to produce ρ1 := TrC[S](Uf · ρ0 · U†f );

3 Apply the quantum Fourier transform to obtain ρ2 := FN · ρ1 · F†N ;
4 Measure the register C[Z/NZ] of ρ2 to obtain k ∈ Z/NZ and |ψk〉;
5 Return k and |ψk〉;

With this procedure, we can produce as many states |ψk〉 as we want and then apply a sieving

procedure to all those states in order to determine s. The sieving relies on the ability to produce a new

state when two states are given.

B.6.2 Principle of the sieve: producing new states

Let |ψk〉 and |ψl〉 be two sampled states. We consider the joint state:

|ψkψl〉 =
1

2

Ä
|00〉+ ωksN |10〉+ ωlsN |01〉+ ω

(k+l)s
N |11〉

ä
and we let the C-NOT gate C¬ given by:

∀a, b ∈ {0, 1}, C¬|a, b〉 = |a, a+ b mod 2〉

operate on |ψkψl〉. The system is now in the pure state:

C¬|ψkψl〉 =
1

2

Ä
|00〉+ ω

(k+l)s
N |10〉+ ωlsN |01〉+ ωksN |11〉

ä
.

Then, we measure the second bit. If we measure the value 0, then the state becomes:

1√
2

Ä
|0〉+ ω

(k+l)s
N |1〉

ä
= |ψk+l〉

and if we measure the value 1, then the state becomes:

1√
2

(
ωlsN |0〉+ ωksN |1〉

)
= ωlsN |ψk−l〉,

which can be assimilated to |ψk−l〉 because collinear unit states are equivalent. Hence, we either obtain

|ψk+l〉 or |ψk−l〉 by the end of this procedure. By measurement, we also know if we obtained k + l or

k − l.

Algorithm 11: State creation.

Data: Two state |ψk〉 and |ψl〉.
Result: A state |ψk±l〉 together with the integer k ± l, where the sign ± is an unbiased coin flip.

1 Let the C-NOT gate operate on |ψkψl〉 to obtain |Ψ〉 := C¬|ψkψl〉;
2 Measure the second bit of Ψ;
3 If the result of the measure is ε ∈ {0, 1}, we obtain |ψk+(−1)εl〉;
4 Output |ψk+(−1)εl〉 and k + (−1)εl;
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B.6.3 Sieving procedure in the case N = rn

In this paragraph, we describe how this sieving procedure works when N is a prime power N := rn,

with r relatively small. However, this could be generalized to any value of N (see [14, Algorithm 2] for

details). Here, we shall not deal with the general case because it is not necessary for our application to

G = Cl(On) whose p-groups have small values of p.

Goal of the sieving: reduce the problem to DN/r

If s ≡ a [r] for a ∈ J0 ; r − 1K then our hidden reflection yxs is in the subgroup Ga := 〈yxa, xr〉, which

is isomorphic to DN/r. Hence, we have reduced our problem to the hidden reflection in DN/r, provided

that we can find s mod r.

To find s mod r, we use states |ψk〉 with k := brn−1 and b ∈ J1 ; r − 1K. With sufficiently many

copies of |ψk〉 (for the same k), we can recover s mod r by state tomography, as explained in [46, § 8.4.2,

p.389]. We consider the Pauli matrices:

σ0 := I2, σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
and σ3 :=

(
1 0

0 −1

)
.

The system (σj/
√

2)0≤j≤3 is a basis for the Hilbert-Schmidt scalar product:

(A,B) ∈M2(C) 7−→ (A|B) := Tr(A† ·B).

Hence, our state ρ := |ψk〉〈ψk| is fully determined by the equation:

ρ =
1

2

3∑
j=0

Tr(σj · ρ)σj .

Actually, the trace Tr(σj · ρ) is the expected value of the observable σj when the system is in state ρ so

we may evaluate it by law of large numbers, provided that we have enough copies of ρ to test. By the

central limit theorem, if we have m observations z1, · · · , zm, the statistical 1
m

∑m
l=1 zl should approximate

Tr(σj · ρ) with precision 1/
√
m. Actually, we have

Tr(σ0 · ρ) =
1

2
, Tr(σ1 · ρ) = cos

Å
2πbs

r

ã
, Tr(σ2 · ρ) = sin

Å
2πbs

r

ã
and Tr(σ3 · ρ) = 0,

so we only have to measure Tr(σ1 · ρ) and Tr(σ2 · ρ), to determine ρ.

The sieve

For all k ∈ Z/NZ (seen as an integer in J0 ; N − 1K), let α(k) be the number of trailing zeros in the

decomposition of k in basis r. We describe a sieving procedure maximizing the value of α. We start with

a list L0 of sub-exponential size containing states |ψk〉 with k ∈ Z/NZ uniformly random, provided by

repeated quantum oracle queries following Algorithm 10.

Let k := dlog2(r)e, m := d
√

(n− 1)/ke and m′ := d(n− 1)/me. For j ∈ J0 ; m′ − 1K, we assume that

we have a list Lj of states |ψk〉 with k having mj trailing zeros (α(k) ≥ mj). We construct a list Lj+1

of states |ψk〉 such that α(k) ≥ m(j + 1) as follows: we divide Lj into pairs of states |ψk〉 and |ψl〉 such

that k and l share m digits next to their trailing zeros (or n− 1−m(m′ − 1) digits if j = m′ − 1). Then,

we apply Algorithm 11 to produce a state |ψk±l〉. If the result is k − l, we add the new state |ψk−l〉 to

Lj+1. Otherwise, we do nothing.

Finally, the list Lm′ will contain final states |ψk〉 such that rn−1|k. Provided that Lm′ contains

sufficiently many of these states, we can find s mod r and reduce our problem to DN/r. To sum up,
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we obtain the following version of Kuperberg’s algorithm in the case of a cyclic r-group. Note that this

algorithm is recursive.

Algorithm 12: Kuperberg’s algorithm in a cyclic r-group.

Data: N := rn with r prime, f : DN −→ S with a hidden reflection yxs and a quantum oracle to
compute Uf .

Result: s ∈ Z/NZ.
1 Use Algorithm 10 repeatedly to produce a list L0 of states |ψk〉 with k ∈ Z/NZ uniformly random;

2 k ← dlog2(r)e, m← d
√

(n− 1)/ke, m′ ← d(n− 1)/me;
3 for j := 0 to m′ − 1 do
4 Initiate Lj+1 as the empty list;
5 Divide Lj into a maximal list Pj of pairs |ψk〉 and |ψl〉 such that k and l share

min(m,n− 1−mj) r-digits next to their trailing zeros;
6 For every pair {|ψk〉, |ψl〉} ∈ Pj , apply Algorithm 11 to create a new state |ψk±l〉 and add this

state to Lj+1 if ± = +;

7 end
8 All sates of Lm′ are of the form |ψbrn−1〉 with b ∈ J0 ; r − 1K. Extract all the copies of |ψbrn−1〉

with a fixed value b 6= 0 chosen to maximize the number of these copies. ;
9 Apply state tomography (see Paragraph B.6.3) to recover a := s mod r from the copies of
|ψbrn−1〉;

10 Compute recursively the slope s′ ∈ Z/rn−1Z for the hidden reflection problem induced by f in
Ga := 〈yxa, xr〉;

11 Return a+ rs′;

The number of states in L0 to make sure that Lm′ contains enough copies of the same non trivial

state to perform state tomography.

Lemma B.26. Let k := dlog2(r)e, m := d
√

(n− 1)/ke and m′ := d(n − 1)/me. Suppose that |L0| ≥
4 · 2km+2m′ . Then, |Lm′ | ≥ 2km with overwhelming probability:

P
(
|Lm′ | ≥ 2km

)
≥
Å

1− e−2
m′
3
−1
ãm′

.

Before proving the lemma, we prove the following classical inequality due to Chernoff:

Lemma B.27. Let X1, · · · , XM be M independent Bernoulli variables of parameter 1
2 and SM :=∑M

i=1Xi. Then, for all b ∈]0, 1[, we have:

P

Å
SM ≤

N(1− b)
2

ã
≤ cosh(b)Ne−Nb

2

≤ e−Nb
2

2 .

Proof. We have by Markov’s inequality:

P

Å
SM ≤

N(1− b)
2

ã
= P

Å
M − SM ≥

N(1 + b)

2

ã
= P
Ä
e2b(M−SM ) ≥ eNb(1+b)

ä
≤ E
Ä
e2b(M−SM )

ä
e−Nb(1+b) = E

(
M∏
i=1

e2b(1−Xi)

)
e−Nb(1+b)

= E(e2b(1−X1))Ne−Nb(1+b) (the Xi being i.i.d)

=

Ç
1 + e2b

2

åN
e−Nb(1+b) =

Ç
eb + e−b

2

åN
e−Nb

2

= cosh(b)Ne−Nb
2

To conclude, it suffices to prove that cosh(b) ≤ e b
2

2 . Actually, this equality holds for all b ≥ 0. Let:

g : t ∈ R+ 7−→ ln(2) +
t2

2
− t− ln

(
1 + e−2t

)
.
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To prove the desired inequality,it is sufficient and necessary to prove that g is non-negative on R+. g is

C2 and:

∀t ∈ R+, g′(t) = t− 1 +
2

e2t + 1
and g′′(t) = 1− 4e2t

(1 + e2t)2
= 1− 1

cosh(t)2
.

Since cosh ≥ 1 on R+, it follows that g′′ ≥ 0 on R+, so that g′(t) ≥ g′(0) = 0 for all t ∈ R+, so g is

increasing and g(t) ≥ g(0) = 0 for all t ∈ R+. This completes the proof.

Proof. (of Lemma B.26) We prove by induction that we have for all j ∈ J0 ; m′K:

P
Ä
|Lj | ≥ Cj2km+2(m′−j)

ä
≥
Å

1− e−2
m′
3
−1
ãj
,

with C0 := 4 and for all j ∈ J0 ; m′ − 1K, Cj+1 := Cj(1− 2j−
4m′
3 )(1− 22(j−m′)).

This is trivial for j = 0. Let j ∈ J0 ; m′ − 1K. We assume that the result holds at rank j. Let Pj be

a maximal list of pairs of states |ψk〉 and |ψl〉 of Lj such that k and l share min(m,n− 1−mj) digits (in

basis r) next to their trailing zeros. Since at most rm elements of Lj do not belong to one of these pairs

and r ≤ 2k, we have:

|Pj | ≥
|Lj | − rm

2
≥ |Lj | − 2km

2
.

Assuming that |Lj | ≥ Cj2km+2(m′−j) and that Cj ≥ 1 (that we shall prove later), we get that:

|Pj | ≥
Cj2

km+2(m′−j) − 2km

2
= 2km+2(m′−j)−1(Cj − 22(j−m′)) ≥ 2km+2(m′−j)−1Cj(1− 22(j−m′)).

When executing Algorithm 11 for each pair {|ψk〉, |ψl〉} ∈ Pj , we have a probability of 1
2 to obtain the

state |ψk+l〉 that we can add to Lj+1. Hence, |Lj+1| is the sum of |Pj | independent Bernoulli variables

so for b ∈]0, 1[ to be chosen, Chernoff’s inequality ensures that:

P

Å
|Lj+1| ≤

|Pj |(1− b)
2

ã
≤ e−

|Pj |b
2

2 i.e. P

Å
|Lj+1| ≥

|Pj |(1− b)
2

ã
≥ 1− e−

|Pj |b
2

2 .

We set b := 2j−
4m′
3 . Then, conditionally to the event |Lj | ≥ Cj2km+2(m′−j), we get:

|Pj |(1− b)
2

≥ 2km+2(m′−j−1)Cj(1− 22(j−m′))(1− 2j−
4m′
3 ) = 2km+2(m′−j−1)Cj+1

and:
|Pj |b2

2
≥ 2km+2(m′−j)−1Cj(1− 22(j−m′))22j− 8m′

3 ≥ 2km+m′
3 −2 ≥ 2

m′
3 −1,

since Cj ≥ 1 and km ≥ 1. It follows that:

P
Ä
|Lj+1| ≥ 2km+2(m′−j−1)Cj+1

∣∣∣|Lj | ≥ Cj2km+2(m′−j)
ä
≥ 1− e−2

m′
3 .

The result follows immediately at rank j + 1.

It remains to prove that Cj ≥ 1 for all j ∈ J0 ; m′K. Since the Cj are decreasing, we just have to
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prove that Cm′ ≥ 1. But we have:

Cm′ = C0

m′−1∏
j=0

(
1− 2j−

4m′
3

) Ä
1− 22(j−m′)

ä
= C0

m′∏
j=1

(
1− 2−j−

m′
3

) (
1− 2−2j

)
= C0 exp

Ñ
m′∑
j=1

(
ln
(

1− 2−j−
m′
3

)
+ ln

(
1− 2−2j

))é
≥ 4 exp

Ñ
−

m′∑
j=1

(
2−j−

m′
3 + 2−2j− 4m′

3 −1 + 2−2j + 2−4j−1
)é

≥ 4 exp

(
− 1

2
m′
3 +1

(
1− 1

2

) − 1

2
4m′
3 +3

(
1− 1

22

) − 1

22
(
1− 1

22

) − 1

24
(
1− 1

24

))

= 4 exp

Å
− 1

2
m′
3

− 1

3 · 2 4m′
3 +1

− 1

3
− 1

15

ã
≥ 1

as soon as m′ ≥ 1, which is obviously the case.

Theorem B.28. In the cyclic case with N = rn for r relatively small, Kuperberg’s algorithm (Algo-

rithm 12) terminates and is correct with overwhelming probability, requires 2O(
√

log2(N)) queries to the

oracle Uf , runs in time 2O(
√

log2(N)) and uses 2O(
√

log2(N)) qubits.

Proof. The termination and correctness follows from the explanations and results given above (Lemma

B.26 in particular).

We keep the notations of Algorithm 12. By Lemma B.26, the size of the list L0 is 4 · 2km+2m′ , where

k := dlog2(r)e, m := d
√

(n− 1)/ke and m′ := d(n − 1)/me, so that, when n → +∞ and r is constant,

m =
√
n/k +O(1) and m′ =

√
kn+O(1) and:

km+ 2m′ = 3
√
kn+O(1) = 3

»
log2(r) logr(N) +O(1) = 3

»
log2(N) +O(1).

As a consequence, 23
√

log2(N)+O(1) quantum queries are necessary on line 1 of 12. Taking into account

the n recursive calls we get that the number of quantum queries is:

n−1∑
k=0

23
√

log2(N/rk)+O(1) ≤ n23
√

log2(N)+O(1) = 2O(
√

log2(N)).

The operations performed on the lists Lj for j ∈ J0 ; m′ − 1K are linear in the size of these lists

which is bounded by |L0|. As a consequence, the for loop in Algorithm 12 has a time complexity

m′23
√

log2(N)+O(1) = 2O(
√

log2(N)). Line 8 and 9 of the algorithm do not change the complexity. Taking

into account the recursion, we get a time complexity of n2O(
√

log2(N)) = 2O(
√

log2(N)).

The space complexity in terms of qubits is bounded by |L0| = 2O(
√

log2(N)).

Remark B.29. The complexities given here only hold only if r is small and n → +∞. If n = 1 and

N = r is prime, Algorithm 12 is exponential in log2(N). Hopefully, Kuperberg’s provided an algorithm

working in this case.

General case (G not cyclic)

We briefly explain (without proof) how the cyclic case can be generalized to any finite abelian group G.

By the structure theorem of finite abelian groups, there exists integers N1, · · · , Na ≥ 2 such that:

G '
a∏
i=1

Z/NiZ.
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We can even assume that the Ni are prime powers by the Chinese remainder theorem. As in the cyclic

case, every element g ∈ DG can be uniquely written as g = yε
∏a
i=1 x

ti
i , with ε ∈ Z/2Z and ti ∈ Z/NiZ

for all i ∈ J1 ; aK, y being the standard reflection and xi being generator of the factor Z/NiZ for i J1 ; aK.
The hidden reflection is then determined by an a-dimensional slope s ∈

∏a
i=1Z/NiZ.

A slightly modified version of Algorithm 10 (with a multidimensional quantum Fourier transform),

when given the pure state |DG〉|0e〉, outputs a state:

|ψk〉 := |0〉+ e
∑a

j=1

2ikjsjπ

Nj |1〉,

with a random uniform vector k := (k1, · · · , ka) ∈
∏a
i=1Z/NiZ. The idea is to perform 2O(log2(|G|))

such quantum queries to obtain a list of such states |ψk〉 and then apply a sieving procedure to produce

2O(log2(Ni)) states |ψk〉 with k almost zero except at index i ∈ J1 ; aK, and then apply a new sieving in

the group 〈y, xi〉 ' DNi to recover si. If Ni is a prime power, Algorithm 12 can be applied.

As previously, this sieving procedure to discard vector components except at index i ∈ J1 ; aK uses

a variant of Algorithm 11 to produce states |ψk±l〉 with pairs of states |ψk〉 and |ψl〉 and maximizes an

objective function αi defined over
∏a
j=1Z/NjZ. For i = a, this objective function was explicitely defined

by Kuperberg [14, proof of Theorem 7.1]. For k ∈
∏a
j=1Z/NjZ, let b(k) := min{1 ≤ j ≤ a|kj 6= 0} and

if b(k) < a, set:

α(k) :=

b(k)∑
j=1

d1 + log2(Nj + 1)e − dlog2(kb(k) + 1)e

if b(k) = a, set:

α(k) :=
a∑
j=1

d1 + log2(Nj + 1)e.

Theorem B.30. Hidden reflection problem in DG can be solved in time 2O(log2(|G|)) with 2O(log2(|G|))

quantum queries and 2O(log2(|G|)) qubits.

Proof. See [14, Theorem 7.1].
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Appendix C

Constructing hash proof systems

with the OSIDH framework

This chapter was an attempt to construct new cryptographic primitives with the OSIDH framework

beyond key exchange. Indeed, OSIDH runs very slowly compared other isogeny-based Diffie-Hellman

protocols such as SIDH (and even CSIDH) which are themselves slow compared to lattice based and code

based key exchanged submitted to the NIST. Hence, the potential interest of OSIDH motivating this

master’s thesis was to go beyond key exchange and to find new primitives based on its framework. Here,

we present how to construct hash proof systems with OSIDH but these constructions are unfortunately

insecure.

C.1 Definition of a hash proof system

This notion was first introduced by Cramer and Shoup in [48]. We use the notations and follow the

presentation of [10].

Definition C.1. A hash proof system is a tuple Π := (Λ, π,ProjEval, L,Σ,W,K,P,Γ), where, on the

one hand L,Σ,W,K,P and Γ are sets such that:

(i) There exist efficient algorithms to sample elements from Σ and K with uniform distribution.

(ii) L ⊂ Σ and W is the space of witnesses to test membership in L.

(iii) The uniform distributions on L and Σ are computationally indistinguishable (subset membership

problem).

On the other hand, the hash function Λ, the projection π : K −→ P and the projective evaluation

ProjEval : P × L −→ Γ are efficiently computable functions such that, for any algorithm (possibly

inefficient) ω : L −→ W associating a membership witness w = ω(σ) ∈ W to every element σ ∈ L, we

have a commutative diagram:

K × L Λ //

π×ω
��

Γ.

P ×W
ProjEval

;;

We additionally require Π to be universal, meaning that knowing (π(k), σ) for (k, σ) ∈ K × Σ \ L
provides no information on the value of Λ(k, σ). Formally, for ε > 0, we say that Π is ε-universal if:

H∞(Λ(k, σ)|(π(k), σ)) ≥ log(ε−1),

where H∞(.|.) is the conditional min-entropy defined below.
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Definition C.2. Let X and Y be discrete random variables taking values in X and Y respectively. Then,

the conditional min-entropy of X, knowing Y is the quantity:

H∞(X|Y ) = − log max
(x,y)∈X×Y

P(X = x|Y = y).

Hash proof systems can be used to construct cryptographic protocols such as public key encryption

secure against ciphertext attack (IND-CCA) [48], authenticated key-exchange [49] and other protocols

satisfying privacy preservation hypothesis [50]. However, these constructions require hash proof systems

with stronger security assumptions.

C.2 Hash proof system form weak-pseudorandom restricted ef-

fective group actions

Definition C.3. [10, Definition 2] An effective group action is a triplet (G,X, ·) where G is a finite

group, X a finite set · : G×X −→ X a transitive and faithful group action, such that:

(i) There are efficient algorithms on G to test membership, equality, to sample elements (with uniform

distribution), compute the product of two elements and the inverse of one element.

(ii) There is an efficient algorithm to test membership in X and every element of X admits a unique

(bitstring) representation.

(iii) We know (the bitstring representation of) an element x0 ∈ X called the origin.

(iv) There exists an efficient algorithm computing g · x when g ∈ G and x ∈ X are given.

In the context of OSIDH, we don’t know how to efficiently compute the action of the whole group

but only on a subset. The definition can be adapted to this case:

Definition C.4. [10, Definition 6] A restricted effective group action is a triplet (G,X, ·, g) where G is a

finite group, X a finite set · : G×X −→ X a transitive and faithful group action, and G := {g1, · · · , gt}
a generating set of G such that:

(i) t is polynomial in log(|G|).

(ii) There is an efficient algorithm to test membership in X and every element of X admits a unique

(bitstring) representation.

(iii) We know (the bitstring representation of) an element x0 ∈ X called the origin.

(iv) There exist efficient algorithms computing gi · x and g−1
i · x when i ∈ J1 ; tK and x ∈ X are given.

Remark C.5. We assume that G is abelian. Knowing the generating set G = {g1, · · · , gt} of G, we can

represent elements g ∈ G as tuples of Zt via the map:

φ : e := (e1, · · · , et) ∈ Zt 7−→ ge :=
t∏
i=1

geii ∈ G

and compute the action of ge on X when e ∈ Zt has components of polynomial size. We can even sample

on G with distributions statistically close to the uniform by sampling e ∈ Zt with Gaussian distribution

with standard deviation sufficiently bigger than the smoothing parameter of the lattice ker(φ) ⊆ Zt (see

[51, Sections 3 and 4]).

Definition C.6. A group action (G,X, ·) is said weak-pseudorandom if given a randomly chosen secret

g ∈ G, one cannot distinguish between the distribution of (x, g · x) and (x, y), where x and y are chosen

uniformly at random in X.
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Let (G,X, ·) be an abelian weak-pseudorandom (restricted) effective group action. We can construct

a hash proof system with it as follows: we fix x0, x1 ∈ X with x1 = s · x0 with s ∈ G secret. Let:

Σ := {(g0 · x0, g1 · x1) | g0, g1 ∈ G} and L := {(g · x0, g · x1) | g ∈ G},

W := G, K := G × {0, 1} and P = Γ := X. We define the hash function Λ : (G × {0, 1}) × Σ −→ X as

follows:

∀(h, b) ∈ G× {0, 1}, (y0, y1) ∈ Σ, Λ((h, b), (y0, y1)) := h · yb

and set:

∀(h, b) ∈ G× {0, 1}, π(h, b) := h · xb,

∀(x, g) ∈ X ×G, ProjEval(x, g) := g · x

and ∀g ∈ G, ω((g · x0, g · x1)) := g,

so that Λ = ProjEval ◦(π × ω) on K × L.

Theorem C.7. [10, Theorem 1] The system Π := (Λ, π,ProjEval, L,Σ, G,G×{0, 1}, X,X) defined above

is a 2−1-universal hash proof system.

Proof. Under the hypothesis we made, the non-trivial points to prove are subset membership problem

and universality.

Since the group action ofG onX is faithful, sampling an element (y0, y1) ∈ L with uniform distribution

is equivalent to sampling g ∈ G with uniform distribution and returning (g · x0, g · x1). Writing y0 :=

g · x0, we get that g · x1 = g · s · x0 = s · g · x0 = s · y0 because G is abelian. Since y0 is uniform,

(g · x0, g · x1) = (y0, s · y0) is indistinguishable from (y0, y1) sampled with uniform distribution from

X2 by weak-pseudorandomness. But X2 = Σ by transitivity of the group action. Hence, the uniform

distributions on L and Σ are undistinguishable.

Let (h, b) ∈ G × {0, 1} be a key (secret and sampled with uniform distribution) and (y0, y1) =

(g0 · x0, g1 · x1) ∈ Σ \ L be sampled with uniform distribution. Let us assume that an attacker with

unbounded capabilities knows (y0, y1) and π(h, b) = h ·xb and wants to recover Λ((h, b), (y0, y1)) = h · yb.
Since π(h, b) = h ·xb = hs2b−1 ·x1−b, the knowledge of (y0, y1) and π(h, b) enables the unbounded attacker

to infer that Λ((h, b), (y0, y1)) = h · yb = hgb · xb or:

Λ((h, b), (y0, y1)) = hs2b−1 · y1−b = hs2b−1g1−b · x1−b = hs2b−1g1−bs
1−2b · xb = hg1−b · xb 6= hgb · xb.

Hence, the attacker has a probability 1
2 to guess the right value. It follows that:

H∞(Λ((h, b), (y0, y1))|(π(h, b), (y0, y1))) = − log

Å
1

2

ã
,

so that Π is 2−1-universal.

Using the OSIDH framework, we can take G := Cl(On) (or the subgroup generated by the ideals

q1, · · · , qt) and X := ρ(Ell(On)). To simplify the computation of the group action using the techniques of

Paragraph 1.5.2, we could represent elements of X as descending `-isogeny chains (Ei)0≤i≤n. However, in

that case, weak-pseudorandomness would not hold because of the attacks of Sections 3.1 and 3.2. Indeed,

let us fix two descending `-isogeny chains (E0,i)0≤i≤n and (E1,i)0≤i≤n := s·(E0,i)0≤i≤n, where s is a secret

randomly chosen ideal of On. Then, sampling [a], [b] ∈ Cl(On) uniformly (using Gaussian distributions as

explained in Remark C.5 if necessary) we can distinguish the distribution of pairs ([a] · (E0,i), [a] · (E1,i))

and ([a] · (E0,i), [b] · (E1,i)) by recovering [a] and [b].

To correct this, we use the technique introduced in Paragraph 2.2. Instead of representing elements of
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ρ(Ell(On)) by descending `-isogeny chains (Ei)0≤i≤n, we represent them as the list of horizontal chains:

E
(−r)
n,j := (q

(n)
j )−r · En −→ · · · −→ En −→ · · · −→ E

(r)
n,j := (q

(n)
j )r · En

for all j ∈ J1 ; tK. Unfortunately, the attack of Section 3.4 undermines weak-pseudorandomness in this

case too, unless the parameters are chosen so that the key space:{
t∏

j=1

[qj ]
ej

∣∣∣∣∣∣ e1, · · · , et J−r ; rK

}

represents a very small portion of Cl(On). Unfortunately, in that case, the projective evaluation is no

longer easily computable because we are restricted to group actions by elements of this tiny key space.

Hence, such a construction fails with OSIDH.

In the following, we tried to bypass these difficulties by combining OSIDH with Supersingular Isogeny

Diffie Hellman (SIDH) due to De Feo, Jao and Plût [3]. Unfortunately, this attempt fails too because of

our cryptanalysis of OSIDH.

C.3 An original hash proof system combining SIDH with OS-

IDH

Attempts have been made to construct a hash proof system using SIDH only which has stronger security

than OSIDH. If the subset membership problem is indeed stronger, these constructions fail to ensure

universality, which is a direct consequence of the transitivity and faithfulness of the class group action in

the OSIDH framework. For that reason, combining the strengths of both frameworks could be fruitful.

The main idea of the hash proof system presented here is to make the projection π act horizontally

by ideal class group action (OSIDH component) and make ProjEval act vertically as quotient by cyclic

kernels (SIDH component).

Let K be a quadratic imaginary number field such that Cl(OK) is trivial. Let r 6= ` be a small prime

inert in K (i.e. such that
(

∆K

r

)
= −1). Let ` be a small prime and Oi := Z+`iOK and Oi,j := Z+`irjOK

for all i, j ∈ N. We chose p of the form p := fre±1 with e ∈ N∗ big enough (to ensure SIDH security) and

f big enough to construct descending `-ladders and r-ladders efficiently with the techniques of Paragraph

1.5.2. Actually:

p > max
1≤j≤t

(qj)`
2nr2e|∆K | (see Lemma C.10).

We also assume that p does not split in K (see Proposition 1.12).

Lemma C.8. Let E/Fp2 such that |E(Fp2)| = (fre)2. Then:

(i) E(Fp2) = E[fre]. In particular, E[re] ⊆ E(Fp2).

(ii) Assume that E ∈ ρ(Ell(On)) and let P ∈ E[re] be of order re. Then E/〈P 〉 ∈ ρ(Ell(On,e)) (we recall

that On,e = Z+ reOn = Z+ `nreOK).

Proof. (i) Since |E(Fp2)| = (fre)2 = (p ∓ 1)2, the trace of the p2-th Frobenius π2 is ∓2p, so we have

π2
2 ± [2p]π2 + [p2] = 0 i.e. (π2 ± [p])2 = 0 i.e. π = ∓[p].

Let P ∈ E[fre]. Then for all Q ∈ E[fre], we have:

efre(π2(P ), Q) = efre(∓[p]P,Q) = efre(P,Q)∓p = efre(P,Q)∓fr
e+1 = efre(P,Q),

so that efre(π2(P )− P,Q) = 1. It follows that π2(P ) = P i.e. P ∈ E(Fp2). Hence E[fre] ⊆ E(Fp2) and

we have an equality since both sets have cardinality (fre)2.
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(ii) Let φ : E −→ E/〈P 〉 be the isogeny of kernel 〈P 〉. Then, we have φ = φe ◦ · · · ◦ φ0 where

φ0 = [1]E and for all i ∈ J1 ; eK, φi : Ei−1 −→ Ei (E0 := E, Ee := E/〈P 〉) has kernel generated by

φi−1 ◦ · · · ◦ φ0(re−iP ). For all i ∈ J1 ; rK, φi has degree r, so it suffices to prove that φi is descending.

Since r is inert in K, by Proposition 1.23.(i), φ1 is descending. Let i ∈ J2 ; eK. Assume that φ1, · · · , φi−1

are descending. By Proposition 1.23.(ii), φi is either descending or ascending. If it was ascending, since

there is only one ascending isogeny, from Ei−1, we would have φi = ‘φi−1 so that φ factors through [r]

and E[r] ⊆ ker(φ). But ker(φ) is cyclic and E[r] is not. Contradiction. Hence, φi is descending. This

completes the proof.

Let q be a prime 6= r, `, p splitting in K and q a prime ideal of OK lying above q. Let q(i,j) := q∩Oi,j
for all i, j ∈ N. To lighten the notations, the exponent (i, j) will often be omitted. Let E ∈ ρ(Ell(On)),

such that |E(Fp2)| = (fre)2 and let P ∈ E[re] of order re. For our construction, we need to compute

the action of q(n,e) on E/〈P 〉 (with its induced On,e-orientation). This computation uses descending

r-ladders and the ideas of Paragraph 1.5.2.

Lemma C.9. There is a descending r-ladder of length n and degree q:

E0

ψ0

��

φ1 // E1

ψ1

��

φ2 // · · ·
φe−1 // Ee−1

ψe−1

��

φe // Ee

ψe

��
F0 := q · E0

φ′1 // F1 := q · E1

φ′2 // · · ·
φ′e−1 // Fe−1 := q · Ee−1

φ′e // Fe := q · Ee

such that:

(i) E0 = E and Ee = E/〈P 〉.

(ii) φ := φe ◦ · · · ◦ φ1 has kernel 〈P 〉.

(iii) ker(ψi) = Ei[q] for all i ∈ J0 ; eK.

(iv) φ′ := φ′e ◦ · · · ◦ φ′1 has kernel 〈ψ0(P )〉 or equivalently, q · (E/〈P 〉) = (q · E)/〈ψ0(P )〉.

Proof. As in the proof of Lemma C.8, point (ii), we define φ0 = [1]E and for all i ∈ J1 ; eK, φi : Ei−1 −→
Ei as the r-isogeny of kernel generated by Qi := φi−1 ◦ · · · ◦ φ0(re−iP ), so that points (i) and (ii) are

satisfied. For all i ∈ J0 ; eK, ψi : Ei −→ q · Ei is the isogeny associated to q (ker(ψi) = Ei[q]), so that

point (iii) is satisfied.

To prove the existence of the r-ladder satisfying point (iv), we simply prove that for all i ∈ J1 ; eK,
ψi ◦ φi factors through ψi−1 by an isogeny φ′i of kernel 〈ψi−1(Qi)〉. By [15, Corollary III.4.11], it suffices

to prove that ker(ψi−1) ⊆ ker(ψi ◦ φi). The equality ker(φ′i) = 〈ψi−1(Qi)〉 will then follow from ψi ◦ φi =

φ′i ◦ ψi−1.

Let ιi−1 be the primitive On,i−1-orientation defined on Ei−1. Then, ιi := φi∗(ιi−1) is a primitive On,i-
orientation because φi is vertical, as we saw when we proved Lemma C.8, point (ii). Let P ∈ ker(ψi−1) =

Ei−1[q(n,i−1)]. Then, we have ιi−1(α)(P ) = 0 for all α ∈ q(n,i−1), so that:

ιi(α)(φi(P )) =
1

r
φiιi−1(α)“φiφi(P ) =

1

r
φiιi−1(α)[r](P ) = φiιi−1(α)(P ) = 0

for all α ∈ q(n,i) ⊆ q(n,i−1). Hence φi(P ) ∈ Ei[q(n,i)] i.e. ψi ◦ φi(P ) = 0. This completes the proof.

We can construct the r-ladder of Lemma C.8 with the techniques of Paragraph 1.5.2. For all i ∈ J1 ; eK,
j(Fi) is solution of:{

Φq(j(Ei), x) = 0

Φr(j(Fi−1), x) = 0
⇐⇒ gcd(Φq(j(Ei), x),Φr(j(Fi−1), x)) = 0 (?)i.
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Lemma C.10. Conversely, consider a descending r-ladder of length e and degree q:

E0

ψ0

��

φ1 // E1

ψ1

��

φ2 // · · ·
φe−1 // Ee−1

ψe−1

��

φe // Ee

ψe

��
F0

φ′1 // F1

φ′2 // · · ·
φ′e−1 // Fe−1

φ′e // Fe

and assume that:

(i) E0 = E and ker(φi) = 〈φi−1 ◦ · · · ◦ φ0(re−iP )〉 for all i ∈ J1 ; eK (with φ0 = [1]E0
).

(ii) p > q`2nr2e|∆K |.

(iii) F0 = q · E0

(iv) j(Fi) is solution of (?)i for all i ∈ J1 ; eK.

(v) q2 is not principal in On.

Then ker(ψi) = Ei[q] and Fi = q · Ei for all i ∈ J1 ; eK.

Proof. See Proposition 1.33. The same ideas apply.

In the following, we shall work under the hypothesis of Lemma C.10.

C.3.1 Settings and public data

Supersingular elliptic curves E0 and E1

We fix E0 ∈ ρ(Ell(On)) and E1 := [s] · E0 for a secret ideal class [s] ∈ Cl(On) such that |E0(Fp2)| =

|E1(Fp2)| = (fre)2 = (p ∓ 1)2 (to ensure that Eb[r
e] ⊆ Eb(Fp2) for b ∈ {0, 1}, by Lemma C.8.(i)). E0

can be constructed as the ending curve of a descending `-isogeny chain (E0,i)0≤i≤n obtained by random

descent of the `-isogeny graph from a known curve E0,0 ∈ ρ(Ell(OK)). Unfortunately, this process does

not guarantee the cardinality of E0(Fp2), which can be in a limited set of values {(p − 1)2, p2 − p +

1, p2 +1, p2 +p+1, (p+1)2}. Since |E(Fp2)| is roughly uniform when E/Fp2 is sampled uniformly among

elliptic curves defined over Fp2 as [52, Theorem 1.1] seems to indicate, there is heuristically a probability

of success close to 1
5 . By repeating the descent of the `-isogeny graph we may then reach the desired

cardinality. For, E1 we take the ending curve of (E1,i)0≤i≤n := s · (E0,i)0≤i≤n where s is uniformly

sampled among the On-ideals of norm prime to r and `, until |E1(Fp2)| = (fre)2.

Basis of the re torsion of E0 and E1

We fix (P0, Q0), a basis of E0[re]. To do that, we execute a slightly modified version of Algorithm 5, using

the fact that E0[re] ⊆ E0(Fp2). First, we sample P ∈ E0(Fp2) with uniform distribution and compute

fP . Then fP ∈ E0[re] since E0(Fp2) = E0[fre] by Lemma C.8.(i) and fP has order re with probability

1 − 1
r (it can be checked by multiplying fP by r successively). If it is the case, we set P0 := fP .

Otherwise, we repeat this step. Then, we sample Q ∈ E0(Fp2) in a similar way and compute fQ, until

ere(P0, fQ) has order re and set Q0 := fQ when this condition is met.

Then, we know that every point R ∈ E0[re] of order re is of the form R = λP0+µQ0 with λ, µ ∈ Z/reZ
such that λ or µ is invertible modulo re. If R′ := λ′P0 +µ′Q0 is another point of order re, then 〈R〉 = 〈R′〉
if and only if there exists ν ∈ (Z/reZ)× such that R′ = νR i.e. λ′ = νλ and µ′ = νµ. Hence, the cyclic

subgroups of order re of E0 are in bijection with P1(Z/reZ) via the map:

(λ : µ) ∈ P1(Z/reZ) 7−→ 〈λP0 + µQ0〉.
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For all α := (λ : µ) ∈ P1(Z/reZ), we shall denote by 〈α〉 the image subgroup 〈λP0 + µQ0〉. Given

an ideal a ⊆ On, of norm prime to r and `, and ϕa : E0 −→ a · E0, the isogeny of kernel E0[a],

Ba := (ϕa(P0), ϕa(Q0)) is a basis of a · E0[re], since:

ere(Ba) = ere(ϕa(P0), ϕa(Q0)) = ere(P0, Q0)deg(ϕa) = ere(P0, Q0)N(a),

with N(a)∧r = 1, so that ere(Ba) is still a primitive re-th root of unity. For all α := (λ : µ) ∈ P1(Z/reZ),

we shall also denote by 〈α〉Ba
or simply 〈α〉 the subgroup of a ·Eb generated by λϕa(P0) + µϕa(Q0). By

Lemma C.9, we know that a · E0/〈α〉 = (a ∩ On,e) · (E0/〈α〉).
In particular, we can consider E1/〈α〉 = s · E0/〈α〉 = (s ∩ On,e) · (E0/〈α〉) and the basis (P1, Q1) :=

(ϕs(P0), ϕs(Q0)) of E1[re]. We assume that this basis is public along with (P0, Q0).

Public chains to compute the action of Cl(On) horizontally and the action of P1(Z/reZ)

vertically on E0 and E1

To have a restricted effective group action, we assume that Cl(On,e) is generated by q
(n,e)
1 , · · · , q(n,e)

t ,

where q1, · · · , qt are prime ideals of OK lying above small splitting primes q1, · · · , qt distinct from r, `, p.

We even assume that every ideal of Cl(On,e) can be written as a product of these primes with exponents

in J−s ; sK, s ∈ N∗ being relatively small (negative exponents meaning exponentiation of the conjugate

ideal). Not that that this hypothesis is essential to make the projection easily computable but makes

OSIDH insecure. This is the very reason why our hash proof system fails.

We assume that the chains (Eb,i)0≤i≤n associated to Eb = Eb,n for b ∈ {0, 1} remain secret but that

the chains:

E
(−s)
b,j := (q

(n)
j )−s · Eb −→ · · · −→ Eb −→ · · · −→ E

(s)
b,j := (q

(n)
j )s · Eb

are public for all j ∈ J1 ; tK. Note that these chains can efficiently be computed with the techniques of

Paragraph 1.5.2. For all On-ideal a, we denote by ϕb,a : Eb −→ a · Eb, the isogeny of kernel Eb[a]. We

assume that the basis (P
(k)
b,j , Q

(k)
b,j ) := (ϕb,qk

j
(Pb), ϕb,qk

j
(Qb)) of E

(k)
b,j [re] is known for all k ∈ J−s ; sK and

j ∈ J1 ; tK. It can be computed by expressing every isogeny of the chain above by exhaustive search

among the qj + 1 possible qj-isogenies to match the j-invariant of the codomain.

C.3.2 The Hash Proof System HashOSIDH

Now, we construct the following hash proof system, that we shall call HashOSIDH. Let:

Σ :=

ßÅ
((E

(k)
0,j /〈α〉) 1≤j≤t

−s≤k≤s
, (E

(k)
1,j /〈β〉) 1≤j≤t

−s≤k≤s

ã
| α, β ∈ P1(Z/reZ)

™
and:

L :=

ßÅ
((E

(k)
0,j /〈α〉) 1≤j≤t

−s≤k≤s
, (E

(k)
1,j /〈α〉) 1≤j≤t

−s≤k≤s

ã
| α ∈ P1(Z/reZ)

™
.

To lighten the notations, the elements of Σ will be denoted (E0/〈α〉, E1/〈β〉) (and similarly for the

elements of L), omitting the chains which are implicitly known.

The definition of the projection space P is more subtle and will become natural later (see the definition

of π and Lemma C.11). We consider the set S of tuples (E, ι, P,Q) where (E, ι) is a primitively On-

oriented elliptic curve whose K-equivalence class is in ρ(Ell(On)) and (P,Q) is a basis of E[re]. We

consider the equivalence relation ∼ over S defined as follows: (E, ι, P,Q) ∼ (E′, ι′, P ′, Q′) if and only if

there exists an isomorphism λ : E
∼−→ E′ such that λ∗(ι) = ι′ and x, y ∈ On,e of norm prime to pr` such

that λ ◦ ι(x)(P ) = ι′(y)(P ′) and λ ◦ ι(x)(Q) = ι′(y)(Q′). We set P := S/ ∼. The elements of P will be

denoted by [E,P,Q], omitting the On-orientation, which is unique on E under hypothesis (ii) of Lemma

C.10, by Theorem 1.27.
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We also set K := Cl(On,e)×{0, 1}, W := P1(Z/reZ) and Γ := ρ(Ell(On,e)). We define the functions:

Λ : Cl(On,e)× {0, 1} × Σ −→ ρ(Ell(On,e))
(([a], b), (F0, F1)) 7−→ [a] · Fb

and
π : Cl(On,e)× {0, 1} −→ P

([a], b) 7−→ [[aOn] · Eb, ϕb,a(Pb), ϕb,a(Qb)]
,

where ϕb,a : Eb −→ (aOn) · Eb is the isogeny of kernel Eb[aOn], for all ideal a ⊆ On,e of norm prime

to r and ` and b ∈ {0, 1}. Note that, by the definition of P, π is well defined, meaning that the class

π([a], b) does not depend on the representative a chosen in the class [a]. In practice, the computed value

of π([a], b) is the value of a representative. Finally, we define:

ProjEval : P × P1(Z/reZ) −→ ρ(Ell(On,e))
([E,P,Q], α := (a : b)) 7−→ E/〈α〉(P,Q) := E/〈aP + bQ〉

and:
ω : L −→ P1(Z/reZ)

(E0/〈α〉, E1/〈α〉) 7−→ α
.

The well definition of ProjEval is a consequence of the following lemma:

Lemma C.11. Let (E,P,Q), (E′, P ′, Q′) ∈ S such that (E,P,Q) ∼ (E′, P ′, Q′) and α ∈ P1(Z/reZ).

Then E/〈α〉(P,Q) ' E′/〈α〉(P ′,Q′).

Proof. Since (E,P,Q) ∼ (E′, P ′, Q′), there exists an isomorphism λ : E
∼−→ E′ and x, y ∈ On,e of norm

prime to pr` such that λ◦ ι(x)(P ) = ι′(y)(P ′) and λ◦ ι(x)(Q) = ι′(y)(Q′), where ι and ι′ are the primitive

On-orientations of E and E′ respectively. We set α := (a : b). Then, we have:

E′/〈α〉(P,Q) ' [yOn,e] · (E′/〈α〉(P ′,Q′)) (since y ∈ On,e)

= [yOn,e] · (E′/〈aP ′ + bQ′〉) ' [yOn] · E′/〈ι′(y)(aP ′ + bQ′)〉 (by Lemma C.9.(iv))

= E′/〈ι′(y)(aP ′ + bQ′)〉 = E′/〈λ(aι(x)(P ) + bι(x)(Q))〉

' E/〈ι(x)(aP + bQ)〉 (since λ is an isomorphism)

= [xOn] · E/〈ι(x)(aP + bQ)〉 ' [xOn,e] · (E/〈aP + bQ〉) (by Lemma C.9.(iv))

= E/〈aP + bQ〉 = E/〈α〉(P,Q) (since x ∈ On,e)

We now justify that Π := (Λ, π,ProjEval, L,Σ,W,K,P,Γ) is (almost but not completely) a hash proof

system.

Lemma C.12. The following diagram is commutative:

(Cl(On,e)× {0, 1})× L
Λ //

π×ω
��

ρ(Ell(On,e)).

P × P1(Z/reZ)

ProjEval

55

Proof. This is a direct consequence of Lemma C.9.

Lemma C.13. Λ, π and ProjEval are efficiently computable ( i.e. computable in polynomial time in the

parameters n, e, `, r, q1, · · · , qt, s).
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Proof. ProjEval((E,P,Q), α) is efficiently computable by computing the chain of r-isogenies whose prod-

uct is the isogoneny of kernel 〈α〉(P,Q) for all [E,P,Q] ∈ P and α ∈ P1(Z/reZ). This computation can

be optimized with computation trees, as in [3, Section 4.2.2].

Let b ∈ {0, 1}. The chain:

(E
(−s)
b,j , P

(−s)
b,j , Q

(−s)
b,j ) −→ · · · −→ (Eb, Pb, Qb) −→ · · · −→ (E

(−s)
b,j , P

(s)
b,j , Q

(s)
b,j )

is public for all j ∈ J1 ; tK. Hence, under the hypothesis of Lemma C.10, we can compute efficiently the

chain:

E
(−s)
b,j /〈α〉 := (q

(n)
j )−s · (Eb/〈α〉) −→ · · · −→ Eb/〈α〉 −→ · · · −→ E

(s)
b,j /〈α〉 := (q

(n)
j )s · (Eb/〈α〉)

for all j ∈ J1 ; tK and α ∈ P1(Z/reZ), by computing the chain of r-isogenies whose product is the

isogoneny of kernel 〈α〉(Pb,Qb) and using the techniques of Paragraph 1.5.2 to construct ladders on the right

and on the left of this chain, whose last elements correspond to the chain above. Hence, given a ⊆ On,e
expressed as a product of the qj : a =

∏t
j=1 q

ej
j , with e1, · · · , et ∈ J−s ; sK, and α0, α1 ∈ P1(Z/reZ):

Λ(([a], b), (E0/〈α0〉, E1/〈α1〉)) = [a] · (Eb/〈αb〉)

is efficiently computable with the method of Paragraph 2.2, using the chains computed above.

Knowing the chain:

E
(−s)
b,j −→ · · · −→ Eb −→ · · · −→ E

(−s)
b,j

is public for all j ∈ J1 ; tK, we can easily compute [aOn] · Eb using the methods of Paragraph 2.2. To

compute π([a], b), we still have to compute the image of the basis (Pb, Qb) by ϕb,a, the isogeny associated

to a. ϕb,a is obtained by composition of ej qj-isogenies for j ∈ J1 ; tK. Each qj-isogeny can be computed

using Vélu’s formulas by an exhaustive search among the qj + 1 possible isogenies in order to map the

j-invariant of the domain to the j-invariant of the codomain. The complexity of this exhaustive search

is O(s(qj + 1)) uses of Vélu’s formulas for all j ∈ J1 ; tK, which is costly but still polynomial.

Remark C.14. Note that in the course of the proof, we used the fact that every ideal class of Cl(On,e)
can be expressed as a product of powers of the qj with exponents in J−s ; sK. This will eventually break

HashOSIDH.

Lemma C.15. HashOSIDH is 2−1-universal.

Proof. Let ([a], b) ∈ Cl(On,e) × {0, 1} be a key (secret and sampled with uniform distribution). Let

(F0, F1) = (E0/〈α0〉, E1/〈α1〉) ∈ Σ \ L be sampled with uniform distribution. Since (F0, F1) 6∈ L,

we have α0 6= α1. Let us assume that an attacker with unbounded capabilities knows (F0, F1) and

π([a], b) = [[aOn] · Eb, ϕb,a(Pb), ϕb,a(Qb)] and wants to recover Λ(([a], b), (F0, F1)) = a · Fb.
We assume that b = 0. Let b := a · (s ∩ On,e). We prove that π([a], 0) = π([b], 1). Let (E, ι, P,Q)

and (E′, ι′, P ′, Q′) be representatives of π([a], 0) and π([b], 1) respectively. It suffices to prove that

(E, ι, P,Q) ∼ (E′, ι′, P ′, Q′). We know that there exists two isomorphisms λ : E
∼−→ [aOn] · E0 and

λ′ : E′
∼−→ [bOn] · E1 and x, y, x′, y′ ∈ On,e of norm prime to pr` such that:{
λ ◦ ι(x)(P ) = ι0,a(y) ◦ ϕ0,a(P0)

λ ◦ ι(x)(Q) = ι0,a(y) ◦ ϕ0,a(Q0)
and

{
λ′ ◦ ι′(x′)(P ′) = ι1,b(y′) ◦ ϕ1,b(P1)

λ′ ◦ ι′(x′)(Q′) = ι1,b(y′) ◦ ϕ1,b(Q1)
(?),

where ι0,a and ι1,b are the On-orientations of [aOn] · E0 and [bOn] · E1 respectively. Since E1 = [s] · E0,

we have E0 = [s] · E1, so that [aOn] · E0 = [bOn] · E1 and ϕ1,b = ϕ0,a ◦ ϕ1,s. Under hypothesis (ii) of

Lemma C.10, we then have ι0,a = ι1,b by Theorem 1.27. Furthermore, P1 = ϕ0,s(P0), so that:

ϕ1,b(P1) = ϕ0,a ◦ ϕ1,s ◦ ϕ0,s(P0) = N(s)ϕ0,a(P0)
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and by the same argument ϕ1,b(Q1) = N(s)ϕ0,a(Q0). Combining that with (?), we get:{
λ−1 ◦ λ ◦ ι(x′y)(P ′) = ι(N(s)xy′)(P )

λ−1 ◦ λ ◦ ι(x′y)(Q′) = ι(N(s)xy′)(Q)
,

so that (E′, ι′, P ′, Q′) ∼ (E, ι, P,Q).

By similar arguments, we get that π([a], b) = π([b], 0), with b := a · (s ∩ On,e), when b = 1. Hence,

the attacker can guess ([a], b) or ([b], 1− b).
With its unbounded capabilities, the attacker can also guess α0 and α1 from (F0, F1) = (E0/〈α0〉, E1/〈α1〉).

We also have:

Λ(([a], b), (F0, F1)) = [a] · Fb = [aOn] · Eb/〈αb〉 = [bOn] · E1−b/〈αb〉

6= [bOn] · E1−b/〈α1−b〉 = Λ(([b], 1− b), (F0, F1))

since αb 6= α1−b, the inequality is a consequence of Lemma C.16 below. Hence, the attacker finds the

value of the hash function with 1 bit of indetermination, so that:

H∞(Λ(([a], b), (F0, F1))|(π([a], b), (F0, F1))) = − log

Å
1

2

ã
.

Lemma C.16. Let E ∈ ρ(Ell(On)). Then, the map:

{cyclic subbroups of order re in E[re]} −→ ρ(Ell(On,e))
H 7−→ E/H

is injective.

Remark C.17. Note that under hypothesis (ii) of Lemma C.10, we can omit the On,e-orientation when

considering elements of ρ(Ell(On,e)), and see these elements as elliptic curves up to isomorphism, or

equivalently, as j-invariants. Hence, we even have an injective map when considering j-invariants.

Proof. Let H,H ′ be two cyclic subgroups of order re in E such that E/H = E/H ′. Then, as in the proof

of Lemma C.8.(ii), we have descending r-isogeny chains (Ei)0≤i≤e and (E′i)0≤i≤e whose composition are

the isogenies E −→ E/H and E −→ E/H ′ respectively. We assume that these chains are distinct. Then,

there exists i ∈ J1 ; eK such that Ei = E′i and Ei−1 6= E′i−1. Hence, Ei has two r-ascending isogenies,

which contradicts Proposition 1.23. Then, the two chains are the same and we have H = H ′.

Actually, HashOSIDH satisfies all the hypothesis but the subset membership problem.Indeed, given

(E0/〈α〉, E1/〈β〉) ∈ Σ, our attack presented in Section 3.4 enables to recover the chains of E0/〈α〉 and

E1/〈β〉 i.e. to recoverα and β. As a consequence, the subset membership problem becomes easy: one only

has to check if α = β. The choice of other parameters to block the attack would make the computation

of the projection much more difficult.
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